Melnikova E., Melnikov A. Determination of rhythmic patterns of pelagic community functioning by the Fourier transform method // Principy èkologii. 2022. № 1. P. 82‒91. DOI: 10.15393/

Issue № 1

Original research


Determination of rhythmic patterns of pelagic community functioning by the Fourier transform method

   Elena Borisovna
PhD, Institute of Natural and Technical Systems,
   Anatolii Viktorovich
PhD, docent, Sevastopol State University,
functioning of pelagic system
biological rhythms
hydrobiont communities
Fourier transform
mathematical model
intensity of luminescence
Summary: The change in the luminescence intensity of the pelagic community in coastal waters on the south-western shelf of the Crimea is considered. It was found that the increases and decreases in the luminescence intensity of hydrobiont communities associated with the functioning of the pelagic system were periodically repeated at the same time. It was noted that the biomass of luminous organisms closely correlated with the biomass of plankton and other inhabitants of the pelagic zone, including commercial pelagic fish species. Therefore the intensity of the luminescence of aquatic organisms is a very important information characteristic of biological processes associated with the life of marine communities. Measurements of the luminescence intensity of the pelagic community can be carried out by high-speed biophysical devices in natural conditions without disturbing the structure and interspecific relationships of hydrobiont communities. Using the Fourier transform method, it was possible to find the parameters of the main biological rhythms of plankton communities that lead to a change in the intensity of the luminescence of hydrobionts. It was shown that the change in the intensity of the luminescence of organisms with a period of 14 hours characterized the circadian rhythms of the light and dark periods. Changes in the intensity of the luminescence of organisms with a period of 4.7 and 2.8 hours are due to the ultradian endogenous rhythms of the pelagic community associated with the intensity of cell division of phytoplankton and the rate of their eating by zooplankton. Graphs of changes in the intensity of the luminescence of organisms in the dark, constructed according to the found model, as well as experimental data and errors in their determination are given. Calculations showed that the correlation coefficients between the measured values of the luminescence intensity of organisms and those calculated using the obtained mathematical model was r = 0.906, taking into account the influence of the three main biological rhythms, This confirms the correctness of the accepted propositions.

© Petrozavodsk State University

Received on: 03 March 2022
Published on: 26 March 2022


Akimoto H. Wu. C., Kinumi T. and Ohmiya Y. Biological rhythmicity in expressed proteins of the marine dinoflagellate Lingulodinium polyedrum demonstrated by chronological proteomics, Biochem. Biophys. Res. Commun. 2004. Vol. 315, No 2. P. 306–312.

Cherepanov O. A. Levin L. A. Utyushev R. N. Relationship of bioluminescence with biomass and abundance of luminous and total plankton. 2. Black Sea, Morskoy ekologicheskiy zhurnal. 2007. T. 6, No. 3. C. 84–89.

Digital spectral analysis and its applications, Per. s angl. O. I. Habarova, G. A. Sidorovoy; Pod red. I. P. Ryzhaka. M.: Mir, 1990. 584 p.

Dzhenkins G. M. Vatts D. G. Spectral analysis and its applications: V 2 t. T. 2. M.: Mir, 1972. 287 p.

Gitel’son I. I. and Levin L. A. Bioluminescence in oceanology, J. Biolumin Chemilumin. 1989. Vol. 4, No 1. P. 555–562.

Hamman J. P., Biggley W. H. and Seliger H. H. Photoinhibition of stimulable bioluminescence in marine dinoflagellates, Photochem. Photobiol. 1981. No 33. P. 909–914.

Hastings J. W. The Gonyaulax clock at 50: Translational control of circadian expression, Cold Spring Harbor Symp. Quant. Biol. 2007. No 72. P. 141–144.

Kovalev A. V. Mesozooplankton, Plankton Chernogo morya, Pod. red. A. V. Kovaleva i Z. Z. Fenenko. Kiev: Naukova dumka, 1993. P. 144–165.

Krasnow R., Dunlap J. C., Taylor W., Hastings J. W., Vetterling W. and Gooch V. J. Circadian spontaneous bioluminescent glow and flashing of Gonyaulax polyedra, Comp. Physiol. 1980. Vol. 138, No 1. P. 19–26.

Krivosheev V. I. Modern methods of digital signal processing (digital spectral analysis). N. Novgorod, 2006. 117 p.

Lanskaya L. A. Daily course of division of some species of planktonic algae of the Black Sea in cultures, Biologiya i raspredelenie planktona yuzhnyh morey, Pod red V. N. Greze. M.: Nauka, 1967. P. 16–21.

Lapota D., Geiger M. L., Stiffey A. V., Rosenberger D. E. and Young D. K. Correlations of planktonic bioluminescence with other oceanographic parameters from a Norwegian fjord, Mar. Ecol. Prog. Ser. 1989. No 55. P. 217–227. DOI: 10.3354/MEPS055217.

Li Y. Q., Swift E. and Buskey E. J. Photoinhibition of mechanically stimulable bioluminescence in the heterotrophic dinoflagellate Protoperidinium depressum (Pyrrophyta), J. Phycol. 1996. No 32. P. 974–982.

Meeson B. M. Circadian rhythmicity in the marine dinoflagellate Ceratium furca, J. Phycol. 1977. Vol. 13, No 2. R. 45–50.

Moline M. A., Blackwell S. M., Case J. F., Haddock S. H. D., Herren C. M., Orrico C. M., and Terrill E. Bioluminescence to reveal structure and interaction of coastal planktonic communities, Deep Sea Res. Part II. 2009. No 56. P. 232–245. DOI: 10.1016/j.dsr2.2008.08.002.

Ondercin D., Atkinson C. A., Kiefer D. A. The distrtbution of bioluminescence and chlorophyll during the late summer in the north Atlantic: maps and a predictive model, J. Geophys Res. 1996. No 10. P. 6575–6590.

Piontkovskiy S. A. Petipa T. S. Electivity in nutrition of Acartia clausi (Giesbr.), Biologiya morya. 1975. No. 33. P. 3–10.

Polonsky A. B., Mel’nikova E. B., Serebrennikov A. N. and Tokarev Yu. N. Regional Peculiarities of Hydrobiont Bioluminescence Intensity and Chlorophyll a Concentration in Black Sea Waters, Atmospheric and Oceanic. 2018. Vol. 31, No 4. P. 365–371.

Stolbova N. G. Vedernikov V. I. Mikaelyan A. S. Diurnal rhythm of division of dinoflagellates in the Black Sea, Okeanologiya. 1982. T. 22, No. 3. P. 492–495.

Sullivan J. M. and Swift E. Photoinhibition of mechanically stimulated bioluminescence in the autotrophic dinoflagellate, Ceratium fusus (Pyrrophyta), J. Phycol. 1994. No 30. P. 633–637.

Tett P. B. The relation between dinoflagellates and the bioluminescence of Sea water, J. Mar. Biol. Assoc. U. K. 1971. Vol. 51, No 1. R. 183–206.

Titlyanov E. A., Titlyanova T. V., Kalita T. L. and Yakovleva I. M. Rhythmicity in division and degradation of symbiotic dinoflagellates in the hermatypic coral stylophora pistillata, Symbiosis. 2004. No 36. P. 211–224.

Tokarev Yu. N. Vasilenko V. I. Zhuk V. F. New hydrophysical complex for express assessment of the state of coastal ecosistems, Sovremennye metody i sredstva okeanologicheskih issledovaniy: Materialy XI mezhdunar. nauch, tehn. konf., 25–27 noyab. 2009 g., Moskva. M.: Izd-vo RAN, 2009. P. 23–27.

Tokarev Yu. N. Fundamentals of Biophysical Ecology of Hydrobionts. Sevastopol': EKOSI-Gidrofizika, 2006. 342 p. URL:

Tokarev Yu. N., Melnikova E. B. The influence of hydrophysical parameters on intensity of bioluminescence field in the Black Sea, Hydrobiological journal. 2012. Vol. 48, No. 4. P. 93–99. DOI: 10.1615/HydrobJ.v48.i4.70

White H. H. Effects of dinoflagellate bioluminescence on the ingestion rates of herbivorous zooplankton, J. Exp. Mar. Biol. Ecol. 1979. No. 36. P. 217–224.

Widder E. A. Bioluminescence and the pelagic visual environment. Mar. freshw, Behav. Physiol. 2002. No 35. P. 1–26.

Widder E. A. Bioluminescence in the ocean: Origins of biological, chemical, and ecological diversity, Science. 2010. No 328. P. 704–708.

Zavoruev V. V. Zavorueva E. N. Krum S. P. Distribution of plankton in areas of frontal zones of aquatic ecosystems. Krasnoyarsk: SFU, 2012. 292 c.

Displays: 1232; Downloads: 900;