Zaytseva T., Medvedeva N. Effect of mustard gas hydrolysis products on the development of water-bloom forming cyanobacteria // Principy èkologii. 2017. № 1. P. 70‒80. DOI: 10.15393/j1.art.2017.5942


Issue № 1

Original research

pdf-version

Effect of mustard gas hydrolysis products on the development of water-bloom forming cyanobacteria

Zaytseva
   Tatyana
Ph.D., Institution of Russian Academy of Sciences Saint-Petersburg Scientific-Research Centre for Ecological Safety RAS (SRCES RAS), Korpusnaya st., 18, 197110, Saint-Petersburg, Russia, zaytseva.62@list.ru
Medvedeva
   Nadezhda
D.Sc., Institution of Russian Academy of Sciences Saint-Petersburg Scientific-Research Centre for Ecological Safety RAS (SRCES RAS), Korpusnaya st., 18, 197110, Saint-Petersburg, Russia, ngmedvedeva@gmail.com
Keywords:
mustard gas hydrolysis products
cyanobacteria
parameters of toxicity
microcystin-LR
exopolysaccharides
chlorophyll a
Summary: Mustard gas and its hydrolysis products (MGHP) belong to stable organochlorine compounds with high toxicity and broad spectrum of activity. Since the Second World War many aquatic ecosystems including the Baltic and the Adriatic Sea as well as the coastal waters of Japan, the USA, the UK, Australia have been contaminated with mustard gas due to the dumping of chemical weapon. Mustard gas and its hydrolysis products have a negative impact on aquatic life including microbiota. The aim of this work was to define the effect of MGHP on the growth, photosynthetic activity and synthesis of secondary metabolites by water-bloom forming cyanobacteria Trichormus variabilis, Aphanizomenon flos-aquae, Microcystis aeruginosa, Nodularia spumigena. Microbiological, chromatographic, spectrophotometric methods were used. The growth inhibition test with MGHP on cyanobacteria showed influence on the concentration EC50 within the range of 5.5 – 11.2 mg of organochlorine compounds (ОCC) per liter. The synthesis of chlorophyll a was also decreased. It was shown that the chlorophyll synthesis was more sensitive to MGHP than the growth of cyanobacteria. NGHP induced enhanced excretion of exopolysaccharides. Low concentration of MGHP – 0.3 mg OCC/l - promoted the growth of toxigenic cyanobacterium Microcystis aeruginosa and increased microcystin-LR concentration in the environment. enhanced excretion of such metabolites as polysaccharides and cyanotoxins has a serious negative impact on water pollution due to MGHP.

© Petrozavodsk State University

Reviewer: E. Sorokovikova
Received on: 18 November 2016
Published on: 30 March 2017

References

Aleksandrov V. N. Emel'yanov V. I. Poisoning substances. M.: Voennoe izd-vo, 1990. 271 p.

Voloshko L. N. Pinevich A. V. Kopeckiy I. Titova N. N. Hrouzek P. Zelik P. Toxins produced by cyanobacteria in the lower Suzdalskoe lake (Saint-Petersburg, Russia) in water-bloowing period⁄⁄ Al'gologiya. 2008. T. 20. No. 2. P. 210–223.

Zav'yalov E. V. Ecological and toxicological effect of skin-resorptive poisoning substances on fauna. Volgograd, 1995. 18 c.

Zayceva T. B. Microbiological destruction of mustard gas and its hydrolysis products. SPb., 2000. 129 p.

Koneshov S. A. Ecological and hydrobiological diagnostics of toxicants in zones of ecological risk. Saratov, 1999. 18 p.

Kuzikova I. L. Medvedeva N. G. Suharevich V. I. Orlova O. G. Rybal'chenko O. V. Influence of mustard gas hydrolysis products on micromycetes, Mikologiya i fitopatologiya. 2007. T. 41. Vyp. 3. P. 252–260.

Kucenko S. A. Butomo N. V. Grebenyuk A. N. Ivnickiy Yu. Yu. Mel'nichuk V. P. Preobrazhenskaya T. N. Rybalko V. M. Savateev N. V. Military toxicology, radiobiology and medical protection, Pod red. P. A. Kucenko. SPb.: OOO «Izdatel'stvo Foliant», 2004. 526 p.

Medvedeva N. G. Polyak Yu. M. Zayceva T. B. Zharikov G. A. Destruction of mustard gas hydrolysis products by marine and soil bacteria, Izvestiya RAN. Seriya biologicheskaya. 2012. No. 1. P. 91–99.

Medvedeva N. G. Zayceva T. B. Kuzikova I. L. Zinov'eva S. V. Estimation of toxicity of  mustard gas hydrolysis products for aquatic organisms, Voda: himiya i ekologiya. 2016. No. 1. P. 76–81.

Orlova O. G. Effect of the mustard gas hydrolysis products on microorganisms. SPb., 2007. 115 p.

Andrulewicz E. Chemical weapons dumped in the Baltic Sea, I. E. Gonenc et al. (eds.). Assessment of the fate and effect of toxic agents in water. Springer, 2007. P. 301–321.

Chemiche Kampftoffamunition in der sudlichen und westlichen Ostsee Herausgegeben vom Bundesamt fur Seeschiffahrtung Hydrographie. Hamburg, 1993. 66 s.

Debouzy J. C., Aous S., Dabouis V., Neveux Y., Gentilhomme E. Phospholipid matrix as a target for sulfur mustard (HD): NMR study in model membrane systems, Cell Biol. Toxicol. 2002. Vol. 18. No. 6. P. 397–408.

Deng X., Gao K., Sun J. Physiological and biochemical responses of Synechococcus sp. PCC7942 to Irgarol 1051 and diuron, Aquat. Toxicol. 2012. Vol. 122–123. P. 113–119.

El-Sheekh M. M., Khairy H. M., El Shenody R. A. Algal production of extra and intra-cellular polysaccharides as an adaptive response to the toxin crude extract of Microcystis aeruginosa,  Iran. J. Environ. Health. Sci. Health. 2012. Vol. 9. No. 1. Article number V 10.

Jeffrey S. W., Humprhray G. E. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochim. and Physiol. Pflanz. Bd. 1975. Vol. 167. No. 2. P. 191–194.

Herbert D., Phipps P. J., Strange R. E. Chapter III. Chemical Analysis of Microbial Cells, Methods in Microbiology. 1971. Vol. 5. Part B. P. 209–344.

Ichinotsubo D., Mower H. F., Setliff J., Mandel M. Use of Rec-bacteria for testing of carcinogenic substances, Mutat. Res. 1977. Vol. 46. P. 53–62.

Kircher M., Brendel M. DNA alkylation by mustard gas in yeast Saccharomyces cerevisiae strains of different repair capacity, Chem, Biol. Interact. 1983. Vol. 44. P. 27–39.

Lawton L. A., Edwards C., Codd G. A. Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters, Analyst. 1994. Vol. 119. No. 7. P. 1525–1530.

Medvedeva N., Polyak Yu., Kuzikova I., Orlova O., Zharikov G. The effect of mustard gas on the biological activity of soil, Environ. Res. 2008. Vol. 6. No. 3. P. 289–295.

Medvedeva N., Polyak Yu., Kankaanpää H., Zaytseva T. Microbial responses to mustard gas dumped in the Baltic Sea, Marine Environ. Res. 2009. Vol. 68. P. 71–81.

Medvedeva N., Zaytseva T., Kuzikova I. Cellular responses and bioremoval of nonylphenol by the bloom-forming cyanobacterium Planktothrix agardhii 1113, J. Marine Syst. Available online 16 January 2017. In Press. URL: http://dx.doi.org/10.1016/j.jmarsys.2017.01.009.

Nyholm N., Sørensen P. S., Kusk K. O., Christensen E. R. Statistical treatment of data from microbial toxicity tests, Environ. Toxicol. Chem. 1992. Vol. 11. Issue 2. P. 157–167.

Oh H. M., Lee S. J., Jang M. H., Yoon B. D. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat, Appl. Environ. Microbiol. 2000. Vol. 66. P. 176–179.

Otero A., Vincenzini M. Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity, J. Biotechnol. 2003. Vol. 102. No. 2. P. 143–152.

Plunkett G. Chemical Warfare Agent Sea Dumping off Australia. Commonwealth of Australia, 2003. 44 p.

Poliak Yu. M., Zaytseva T. B., Petrova V. N., Medvedeva N. G. Development of mass cyanobacteria species under heavy metals pollution, Hydrobiol. J. 2011. Vol. 47. No. 3. P. 75–90.

Polyak Y., Zaytseva T., Medvedeva N. Response of toxic cyanobacterium Microcystis aeruginosa to environmental pollution, Water Air Soil Pollut. 2013. Vol. 224. P. 1494.

REDCOD Project. Reseach of environmental damage caused by chemical ordnance dumped at sea. Contract No. B4-3070/2003/368585/SUB/D.3. Final Scientific Report. ICRAM, 2006. 277 p.

Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol. 1979. Vol. 111. P. 1–61.

Rosenblatt D. H., Miller T. A., Dacre J. C., et al. Problem definition studies on potential environmental pollutants. II. Physical, chemical, toxicological, and biological properties of 16 substances. Fort Detrick, MD: U.S. Army Medical Bioengineering Research Development Laboratory, 1975. 291 p.

Rosenblatt D. H., Small M. J., Kimmell T. A., et al. Background chemistry for warfare agents and decontamination processes in support of delisting waste streams at the U.S. Army Dugway Proving Ground, Utah. Environmental Assessment Division, 1996. 88 p.

Small M. J. Compounds formed from the chemical decontamination of HD, GB, and VX and their environmental fate. U.S. Army Research and Development Command. Frederick, Maryland, 1984. 175 p.

Wang J., Xie P., Guo N. Effects of nonylphenol on the growth and microcystin production of Microcystis strains, Environ. Res. 2007. Vol. 103. No. 1. P. 70–78.

Zaytseva T. B., Medvedeva N. G., Mamontova V. N. Peculiarities of the effect of octyl- and nonylphenols on the growth and development of microalgae, Inland Water Biol. 2015. Vol. 8. No. 4. P. 406–413.

Zhao L., Lu L., Li M., Xu Z., Zhu W. Effects of Ca and Mg levels on colony formation and EPS content of cultured Microcystis aeruginosa(Conference Paper), Procedia Environ. Sci. 2011. Vol. 10. Part B. P. 1452–1458.

Zhu M. The influence of mustard gas and other chemical agents to the kinds oceanic livings, Acad. J. Second Mil. Med. Univ. 1985. Vol. 6. Issue 5. P. 332–335. 

Displays: 6525; Downloads: 1273;