Bodnar I., Cheban E. The effect of 24-epibrassinolide on growth rates, level of oxidative stress and photosynthetic pigments in little duckwood (Lemna minor L.) after exposure to heavy metals // Principy èkologii. 2020. № 1. P. 27‒42. DOI: 10.15393/j1.art.2020.9422


Issue № 1

Original research

pdf-version

The effect of 24-epibrassinolide on growth rates, level of oxidative stress and photosynthetic pigments in little duckwood (Lemna minor L.) after exposure to heavy metals

Bodnar
   Irina Sergeevna
Ph.D., Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28, Kommunisticheskaya st., 167982 Syktyvkar, Komi Republic, Russia, bodnar-irina@mail.ru
Cheban
   Evgenia Vasilyevna
Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Komi Republic, Russia, cheban.e@ib.komisc.ru
Keywords:
Lemna minor
24-epibrassinolide
heavy metals
strontium
cadmium
copper
zinc
oxidative stress
Summary: One of the mechanisms for reducing the toxic effect of excess heavy metals is the production of plant phytohormones brassinosteroids (Mandava et al., 1988). Exogenous use of 24-epibrassinolide had a positive effect on the growth and development of various plant species under the action of abiotic factors. In this study, we studied the possibility of 24-epibrassinolide to mitigate phytostress in duckweed with excessive intake of copper, cadmium, zinc, and strontium. Preliminary cultivation of a laboratory culture of little duckweed in the medium with 24-epibrassinolide allowed to increase the growth rate and reduce the share of damaged plants in experiments with zinc (6.3-79 µmol/l), copper (12.6 µmol/l) and cadmium (5, 12.6 µmol/l). The range of effectiveness in exogenous intake of brassinosteroids to reduce the toxicity of heavy metals for duckweed is as follows: Zn > Cd > Cu > Sr. Against the background of improved growth and morphometric parameters, the reduction of oxidative stress occurred only in experiments with a high concentration of strontium (1580 µmol/l). The level of malondialdehyde (MDA) in plants when combined with 24-epibrassinolide and copper ions was higher than only when adding metal (p ≤ 0.05). There was a change in the content of carotenoids and chlorophylls. The use of brassinosteroids allowed to reduce the loss of chlorophyll and carotenoids under the action of 12.6 µmol/l of cadmium and zinc (p = 0.05). However, at certain concentrations of heavy metals (for example, 12.6 µmol/l of copper), the content of photoassimilating pigments and carotenoids in plants pretreated with 24-epibrassinolide was lower than in untreated plants (p ≤ 0.05).

© Petrozavodsk State University

Received on: 24 July 2019
Published on: 14 March 2020

References

 Akram R., Natasha, Fahad S., Hashmi M. Z., Wahid A., Adnan M., Mubeen M., Khan N., Rehmani M., Awais M., Abbas M., Shahzad K., Ahmad S., Hammad H. M., Nasim W. Trends of electronic waste pollution and its impact on the global environment and ecosystem, Environmental Science and Pollution Research Serves the International. 2019. No. 17. P. 16923–16938. DOI: 10.1007/s11356-019-04998-2

Ali B., Hasan S. A., Hayat S., Hayat Q., Yadav S., Fariduddin Q., Ahmad A. A. Role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek), Environmental and Experimental Botany. 2008. Vol. 62. No. 2. P. 153–159.

Anuradha S., Rao S. S. R. Effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress, Plant, Soil and Environmental. 2007. Vol. 53. P. 465–472.

Ashraf M., Foolad M. R. Roles of glycinebetaine and proline in improving plant abiotic stress resistance, Environmental and Experimental Botany. 2007. Vol. 59. P. 206–216.

Bajguz A. Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide, Plant Physiology and Biochemistry. 2000. Vol. 38. P. 797–801.

Bajguz A. Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris, Journal of Plant Physiology. 2002. Vol. 159. P. 321–324.

Bajguz A., Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses, Plant Physiology and Biochemistry. 2009. Vol. 47. No. 6. P. 1–8.

Bajguz A., Tretyn A. The chemical characteristic and distribution of brassinosteroids in plants, Phytochemistry. 2003. Vol. 62. No. 7. P. 1027–1046.

Baszynski T., Tukendorf A., Ruszkowska M., Skórzynska E., Maksymiec W. Characteristics of the photosynthetic apparatus of copper nontolerant spinach exposed to excess copper, Journal of Plant Physiology. 1988. Vol. 132. P. 708–713.

Bodnar' I. S. Cheban E. V. Zaynullin V. G. Features of the effect of copper and strontium ions on the laboratory culture of duckweed (Lemna minor L.), Principy ekologii. 2018. No. 2. P. 3–21.

Breivik K., Armitage J. M., Wania F., Sweetman A. J., Jones K. C. Tracking the global distribution of persistent organic pollutants accounting for E-waste exports to developing regions, Environmental Science and Technology. 2016. Vol. 50. P. 798–805.

Cacenko L. V. Pashalidi V. G. Duckweed family as a model object for toxicological testing of water and soil, Maslichnye kul'tury. Nauchno-tehnicheskiy byulleten' Vserossiyskogo nauchno-issledovatel'skogo instituta maslichnyh kul'tur. 2018. Vyp. 4 (176). P. 146–151.

Cao S., Xu Q., Cao Y., Qian K., An K., Zhu Y., Binzeng H., Zhao H., Kuai B. Loss of function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis, Physiologia Plantarum. 2005. Vol. 123. P. 57–66.

Choudhary S. P., Yu J. Q., Yamaguchi-Shinozaki K., Shinozaki K., Tran L. S. Benefits of brassinosteroid crosstalk, Trends in Plant Science. 2012. Vol. 17. R. 594–605.

Ciscato M., Valcke R., van Loven K., Clijsters H., Navari-Izzo F. Effects of in vivo copper treatment on the photosynthetic apparatus of two Triticum durum cultivars with different stress sensitivity, Physiologia Plantarum. 1997. Vol. 100. P. 901–908.

Clouse S. D., Sasse J. M. Brassinosteroids: Essential Regulators of Plant Growth and Development, Annual Review of Plant Physiology and Plant Molecular Biology. 1998. Vol. 49. P. 427–451.

De Vos C. H. R., Schat H., De Waal M. A. M., Voojis R., Ernst W. H. O. Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus, Physiologia Plantarum. 1991. Vol. 82. P. 523–528.

Efimova M. V. Savchuk A. L. Litvinovskaya R. P. Hripach V. A. Holodova V. P. Physiological mechanisms for increasing the salt tolerance of rape plants by brassinosteroids, Fiziologiya rasteniy. 2014. T. 61. No. 6. P. 778–789.

Efimova M. V. Physiological mechanisms for increasing the salt tolerance of Solanum tuberosum L. plants with brassinosteroids depending on the mode of action, Mehanizmy ustoychivosti rasteniy i mikroorganizmov k neblagopriyatnym usloviyam sredy: Sbornik materialov Godichnogo sobraniya Obschestva fiziologov rasteniy Rossii, Vserossiyskoy nauchnoy konferencii s mezhdunarodnym uchastiem i shkoly molodyh uchenyh, Irkutsk, 10–15 iyulya 2018 g. Irkutsk: Izd-vo Instituta geografii im. V. B. Sochavy SO RAN, 2018. Ch. I. P. 316–318.

Efimova M. V., Vankova R., Kusnetsov V. V., Litvinovskaya R. P., Zlobin I. E., Dobrev P., Vedenicheva N. P., Sauchuk A. L., Karnachuk R. A., Kudryakova N. V., Kuznetsov V. V. Effects of 24-epibrassinolide and green light on plastid gene transcription and cytokinin content of barley leaves, Steroids. 2017. Vol. 120. P. 32–40.

Ekmekci Y., Tanyolaç D., Ayhan B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maiz cultivars, Journal of Plant Physiology. 2008. Vol. 165. P. 600–611.

El'kina G. Ya. The behavior of zinc in the soil-plant system in the European Northeast, Agrohimiya. 2009. No. 11. P. 57–64.

Fariduddin Q., Yusuf M., Ahmad I., Ahmad A. Brassinosteroids and their role in response of plants to abiotic stresses, Biologia Plantarum. 2014. Vol. 58. P. 9–17.

Faulkner E. B., Schwartz R. J. High peformance pigments. N. Y.: John Wiley and Sons, 2009. 516 p.

Fridman Y., Savaldi-Goldstein S. Brassinosteroids in growth control: How, when and where, Plant Science. 2013. Vol. 209. R. 24–31.

Gupta M., Cuypers A., Vangronsveld J., Clijsters H. Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris, Physiologia Plantarum. 1999. Vol. 106. P. 262–267.

Hall J. L. Cellular mechanisms for heavy metal detoxification and tolerance, Journal of Experimental Botany. 2002. No. 53. P. 1–11.

Hripach V. A. Zhabinskiy V. N. Lahvich F. A. Prospects for the practical application of brassinosteroids – a new class of phytohormones: review, Sel'skohozyaystvennaya biologiya. Ser.: Biologiya rasteniy. 1995. No. 1. P. 3–11.

Janeczko A., Koscielniak J., Pilipowicz M., Szarek-Lukaszewska G., Skoczowski A. Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress, Photosynthetica. 2005. Vol. 43. P. 293–298.

Küpper H., Kroneck P. M. H. Heavy metal uptake by plants and cyanobacteria, Metal Ions in Biological Systems. 2005. Vol. 44. P. 97–144.

Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods in Enzymology. 1987. No. 148. P. 350–382.

Lidon F. C., Henriques F. S. Changes in the thylakoid membrane polypeptide patterns triggered by excess Cu in rice, Photosynthetica. 1993. Vol. 28. P. 109–117.

Lidon F. C., Henriques F. S. Limiting step in photosynthesis of rice plants treated with varying copper levels, Journal of Plant Physiology. 1991. Vol. 138. P. 115–118.

Luna C. M., González C. A., Trippi V. S. Oxidative damage caused by excess of copper in oat leaves, Plant & Cell Physiology. 1994. Vol. 35. P. 11–15.

Mandava N. B. Plant growth-promoting brassinosteroids, Annual Review of Plant Physiology and Plant Molecular Biology. 1988. Vol. 391. No. 1. P. 23–52.

Marschner H. Mineral nutrition of higher plants. Academic Press, 1995. 889 p.

Miller E. K., Blum J. D., Friedland A. J. Determination of soil exchangeablecation loss and weathering rates using Sr isotopes, Nature. 1993. Vol. 362. P. 438–441.

Molecular-genetic and biochemical methods in modern plant biology, Pod red. Vl. V. Kuznecova, V. V. Kuznecova, G. A. Romanova. M.: BINOM, 2012. P. 348–349.

OECD Guidelines for the testing chemicals. Lemna sp. Growth Inhibition Test. Organisation for Economic Co-operation and Development. Paris, 2006.

Pätsikkä E., Aro E, M., Tyystjärvi E. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo, Plant Physiology. 1998. Vol. 117. P. 619–627.

Ramakrishna B., Rao S. S. R. 24-Epibrassinolide alleviated zinc-induced oxidative stress in radish (Raphanus sativus L.) seedlings by enhancing antioxidative system, Plant Growth Regulators. 2012. Vol. 68. P. 249–259.

Rout G. R., Das P. Effect of metal toxity on plant growth and metabolism, Agronomie. 2003. Vol. 23. P. 3–11.

Saini S., Sharma I., Kaur N., Pati P. K. Auxin – a master regulator on plant root development, Plant Cell Reports. 2013. Vol. 32. No. 6. P. 741–757.

Salin M. L. Toxic oxygen species and protective systems of the chloroplast, Physiologia Plantarum. 1988. Vol. 72. P. 681–689.

Shahid M., Pourrut B., Dumat C., Nadeem M., Aslam M., Pinelli E. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants, Reviews Environonmental Contamination Toxicology. 2014. Vol. 232. P. 1–44.

Shahzad B., Tanveer M., Che Z., Rehman A., Alam Cheema S., Sharma A., Song H., Rehman S., Zhaorong D. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review, Ecotoxicology and Environmental Safety. 2018. Vol. 147. P. 935–944.

Siddiqui H., Hayat S., Bajguz A. Regulation of photosynthesis by brassinosteroids in plants, Acta Physiologiae Plantarum. 2018. Vol. 40 (3). P. 59.

Steinberg R. Mineral requirement of Lemna minor L., Plant Physiol. 1946. Vol. 21. P. 42–48.

Stohs S. J., Bagchi D. Oxidative mechanisms in the toxicity of metal ions, Free Radical Biology & Medicine. 1995. Vol. 18. P. 321–336.

Tahtadzhyan A. L. Plant life. T. 6. M.: Prosveschenie, 1982. P. 493–500.

Uruç Parlac K., Demirezen Yilmaz D. Response of antioxidant defences to Zn stress in three duckweed species, Ecotoxicology and Environmental Safety. 2012. No. 85. P. 52–58.

Vernadskiy V. I. Living matter. M.: Nauka, 1978. 363 p.

Vidaković-Cifrek Ž., Tkalec M., Šikić S., Tolić S., Lepeduš H., Pevalek-Kozlina B. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper, Archives of Industrial Hygiene and Toxicology. 2015. Vol. 66. P. 141–152.

Wang D., Wen F., Xu C., Tang Y., Luo X. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.) – potential for phytoextraction and remediation of contaminated soils, Journal of Environmental Radioactivity. 2012. Vol. 110. P. 78–83.

Xia X. J., Zhang Y., Wu J. X., Wang J. T., Zhou Y. H., Shi K., Yu Y. L., Yu J. Q. Brassinosteroids promote metabolism of pesticides in Cumcumber, Journal of agricultural and food chemistry. 2009. Vol. 57. P. 8406–8413.

Yruela I. Copper in plants: acquisition, transport and interactions, Functional Plant Biology. 2009. Vol. 36. P. 409–430.

Yuan Z., Luo T., Liu X., Hua H., Zhuang Y., Zhang X., Zhang L., Zhang Y., Xu W., Ren J. Tracing anthropogenic cadmium emissions: From sources to pollution, Science Total Environment. 2019. P. 87–96.

Zagoskina N. V. Nazarenko L. V. Reactive oxygen forms and plant antioxidant system, Vestnik MGPU. Ser.: Estestvennye nauki. 2016. No. 2. P. 9–23.

Zhao Y. J., Xu R. J., Luo W. H. Inhibitory effects of abscisic acid on epibrassinolide-induced senescence of detached cotyledons in cucumber seedlings, Chinese Science Bulletin. 1990. Vol. 35. P. 928–931.

Zheng G., Pemberton R., Li P., Bioindicating potential of strontium contamination with Spanish moss Tilandsia usneoides, Journal of Environmental Radioactivity. 2016. Vol. 152. P. 23–27.

Displays: 4784; Downloads: 884;