Sukhodolskaya R., Saveliev A., Shamaev D. Environmental factors impact on body size variation in Ground Beetle Poecilus cupreus L. (Coleoptera, Carabidae) // Principy èkologii. 2017. № 3. P. 118‒131. DOI: 10.15393/

Issue № 3

Original research


Environmental factors impact on body size variation in Ground Beetle Poecilus cupreus L. (Coleoptera, Carabidae)

Ph. D, Institute of Ecology Tatarstan AS, Daurskaya st., 28 Kazan 420087,
Kazan (Volga-Region) State University, Kremlevskaya st., 18 Kazan Russia 420087,
Institute of Ecology Tatarstan AS, Daurskaya st., 28 Kazan 420087,
ground beetles
intra specific size variation
latitude gradient
anthropogenic impact
linear models
Summary: The paper deals with the morphometric analysis of six linear traits in ground beetle Poecilus cupreus L. There is no data on intra-specific body size variation in this species. Beetles were sampled in four provinces of Russia situated at different latitudes – from 45N to 55N. We studied 20 plots with differing anthropogenic impact (cities, suburbs, rural and natural biоtopes) and vegetation (forests, meadows, agricultural areas). We used linear models to determine environmental factors contribution (sampling site in the area, anthropogenic impact) to body size variations in Poecilus cupreus L. It was shown that in the studied species the variability of different traits differed with latitude: elytra and head size increased towards the high latitudes, but pronotum size – decreased. In cities, suburbs and rural habitats nearly all beetles’ traits size decreased. At that, in some cases the traits variations in males and females were bidirectional.

© Petrozavodsk State University

Reviewer: V. Gorbach
Received on: 27 May 2016
Published on: 28 October 2017


Gaston K. J., Blackburn T. M. Process and Pattern in Macroecology. London: Blackwell, 2000. 214 p.

Brown J. H. Macroecology. Chicago: University of Chicago Press, 1995. 270 p.

Brown J. H., Maurer B. A. Macroecology: the division of food and space among species of continents, Science. 1989. Vol. 243. P. 1145–1150.

Chown S. L., Gaston K. J. Body size variation in insects: a macroecological perspective, Biological Reviws. 2009. Vol. 85. Issue 1. P. 139–169.

Dangale C. D. Tiger Beetles as the Appropriate Bioindicators of Environmental Change and Pollution, Environmental Toxicants and their Effects on Species and Ecosystems: 32nd Annual Sessions of the Institute of Biology Sri Lanka. 2012. P. 55–63.

Ernsting G., Isaaks J. A. Effects of temperature and season on egg size, hatchling size and adult size in Notiophilus biguttatus, Ecological Entomology. 1977. Vol. 22. Issue 1. P. 32–40.

Evans V. G. Geographic variation, distribution and taxonomic status of the intertidal insect Thalassotrehus barbarae (Horn.) (Coleoptera, Carabidae), Quaestiones Entomologicae. 1977. Vol. 13. P. 83–90.

Filippov B. Yu. The settlement of ground beetles (Coleoptera, Carabidae) in the north of the Russian Plain: Adaptation pathways and ecological patterns. M., 2008. 40 p.

Gongal'skiy K. B. Butovskiy R. O. Carabids (Coleoptera, Carabidae) in the vicinity of Kosogorskiy Metallurgical Complex, Problemy pochvennoy zoologii: bioraznoobrazie i zhizn' pochvennoy sistemy: Materialy V Vserop. soveschaniya po pochvennoy zoologii, Pod red. B. R. Striganovoy. M.: T-vo nauchnyh izdaniy KMK, 1999. P. 258–259.

Gouws E. J., Gaston K. J., Chown S. L. Intraspecific Body Size Distributions of Insects, PLoS One. 2011. Vol. 6 (3). P. e16606. Doi: 10.1371/journal.pone.0016606 PMCID: MC3068144.

Hanson H. I., Palmu E., Birkhofer F., Smith H. G., Hedlund K. Agricultural Land Use Determines the Traits Composition og Ground Beetles Communities, PLoS ONE. 2016. Vol. 11 (1). P. eo146329.

Homburg K., Schuldt A., Drees C., Assmann T. Broad-scale geographic patterns in body size and hind wing development of western Palaearctic carabid beetles (Coleoptera: Carabidae), Ecography. 2012. Vol. 35. P. 001–012.

Howe A., Enggaard M. Ground Beetles and urbanization, Environmental Biology – module II. Roskilde University, 2006. 88 p.

Jelaska L. S., Durbesic P. Comparison of the body size and wing form of carabid species (Coleoptera, Carabidae) between isolated and continuous forest habitats, Annales de la Societe Entomologique de France. 2009. Vol. 45. No. 3. P. 327–338.

Jelaska L. S., Jesovnik A., Jelaska S. D., Pirnat A., Kucinic M., Durbesic P. Variation of carabid beetle and ant assemblages, and their morpho-ecological traits within natural temperate forests in Medvednica Natural Park, Izvorni i zvanstveni clanci. 2010. Vol. 134. P. 475–486.

Kisilev S. V. Ecological aspects of entomofauna in industrial zones of Tula city. Saransk, 2005. 178 p.

Koivula M. J. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions, Zookeys. 2011. Vol. 100. P. 287–317.

Kryzhanovskiy O. L. SR. Fauna of USSR. Coleoptera. M.: Nauka, 1983. 341 p.

Lovei G. Ecology and conservation biology of Ground Beetles (Coleoptera, Carabidae) in an age of increasing human dominance. 2008. 145 p. URL: (data obrascheniya 05.12.2010).

Maryanski M., Kramarz P., Laskowski R., Niklinska M. Decreased energetic reserves, morphological changes and accumulation of metals in Carabid Beetles (Poecilus cupreus L.) exposed to zinc- or cadmium-contaminated food, Ecotoxicology. 2002. Vol. 11. P. 127–139.

McGeoch M. A. The selection, testing and application of terrestrial insects as bioindicators, Biological Reviews. 1998. Vol. 73. P. 181–201.

R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. URL: (data obrascheniya 12.02.2016).

Severcov A. N. Main directions of evolutionary process. M.; L.: Biomedgiz, 1934. 150 p.

Shelomi M. Where are we now? Bergmanns rule sensu lato in insects, Amer. Naturalist. 2012. Vol. 180 (1). No. 4. P. 511–519.

Shmal'gauzen I. I. Factors of evolution. M.: Nauka, 1968. 451 p.

Shvarc S. S. Ecological regulations of evolution. M.: Nauka, 1980. 278 p.

Stillwell R. C., Blanckenhorn W. U., Teder T., Davodowitz G., Fox C. W. Sex Differences in Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects: From Physiology to Evolution, Annual Review Entomology. 2010. Vol. 55. P. 227–245.

Suhodol'skaya R. A. Eremeeva N. I. Body Size and Shape Variation in Ground Beetle Carabus aeruginosus F.–W., 1822 (Coleoptera, Carabidae), Sibirskiy ekologicheskiy zhurnal. 2013. No. 6. P. 803–812.

Suhodol'skaya R. A. Savel'ev A. A. Effects of Ecological Factors on Morphometric Variation and Sexual Dimorphism in Ground Beetles (on the example of Carabus cancellatus Ill.), Prikladnaya entomologiya. 2012. T. 3. No. 2 (8). P. 28–38.

Suhodol'skaya R. A. Savel'ev A. A. Effects of Ecological Factors on Size Related Traits in Ground Beetle Carabus granulatus L. (Coleoptera, Carabidae), Ekologiya. 2014. T. 5. P. 369–375.

Sukhodolskaya R. Variation in Body Size and Body Shape in Ground Beetle Pterostichus melanarius Ill. (Coleoptera, Carabidae), Journal of Agri-Food and Applied Sciences. 2014. Vol. 2 (7). P. 196–205.

Sukhodolskaya R., Saveliev A. Body Size Variation of Ground Beetles (Coleoptera, Carabidae) in Latitudinal Gradient, Periodicum Biologorum. 2016. Vol. 118. No. 3. P. 273–280.

Sustek Z. Changes in body size structure of body size communities (Coleoptera, Carabidae) in urbanization gradient, Biologia (Bratislava). 1987. Vol. 43. Issue 2. P. 145–156.

Szyszko J., Vermuelen H. J. W., Klimaszewski M., Schwerk A. Mean Individual Biomass (MIB) of ground beetles (Carabidae) as an indicator of the state of the environment, Natural history and applied ecology of carabid beetles. Brandmayr P., Lovei G., Brandmayr T. Z., Casale A., Vigna Taglianti A. (eds.). Sofia; Moscow: Pensoft publishers, 2000. P. 289–294.

Venn S. Morphological responses to disturbance in wing-polymorphic carabid species (Coleoptera: Carabidae) of managed urban grasslands, Baltic J. Coleopterology. 2007. Vol. 7 (1). P. 51–59.

Weller B., Ganzhorn J. U. Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient, Basic and Applied Ecology. 2004. Vol. 5. P. 193–201.

Displays: 5559; Downloads: 1166;