Cherlin V. The phenomenon of psilothermy in the biology of vertebrates // Principy èkologii. 2025. № 2. P. 4‒19. DOI: 10.15393/j1.art.2025.15804


Issue № 2

Analytical review

pdf-version

The phenomenon of psilothermy in the biology of vertebrates

Cherlin
   Vladimir Alexandrovich
DSci, Dagestan state univeersity, 43, Gadzhiev St. Makhachkala Republiс of Dagestan 367000, cherlin51@mail.ru
Keywords:
thermobiological status of vertebrates
hamilothermy
psilothermy
Summary: The analysis of specific data on body temperatures and the principles of organization of thermobiological statuses in different groups of vertebrates made it possible to identify and describe the basic property of vertebrates that has become the organizing force of their biology, starting with reptiles. This is psilothermia, a thermoregulatory reaction that directs animals to raise their body temperature (usually above 28–30 °C). It is also a type of thermobiological status in which animals constantly or part of the time during the day raise and keep their body temperature above 28–30°. They do it through heat coming either from outside the body ("relative" ectothermy, bradymetabolic psilothermy, “potential homeothermy" of modern reptiles), or from inside by endogenous thermogenesis (mesometabolic and tachymetabolic psilothermy). That is, they are different degrees of manifestation of endothermy in many extinct groups of reptiles – archosauromorphs, archosaurs, dinosaurs, advanced theriodonts, as well as in birds and mammals). An alternative to psilothermy and the initial condition is hamilothermy, a type of thermobiological status in which animals do not show a psilothermic reaction, resulting in a body temperature that differs little from ambient temperatures, most often below 28–30°. These are fish and amphibians. The mechanism of psilothermy described by us is the most important, basic, fundamental property of higher vertebrates.

© Petrozavodsk State University

Received on: 02 March 2025
Published on: 13 May 2025

References

Arrhenius S. A. Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte, Z. Phys. Chem. 1889. Vol. 4, issue 1. S. 96–116.

Bergmann C. Uber die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Größe. Göttingen, 1848. 117 S.

Bligh J., Johnson K. G. Glossary of terms for thermal physiology, J. Appl. Physiol. 1973. Vol. 35, No 6. R. 941–961.

Cowles R. B. Semantics in biothermal studies, Science. 1962. No 135. P. 670.

Glossary of terms for thermal physiology. Third Edition revised by The Commission for Thermal Physiology of the International Union of Physiological Sciences (IUPS Thermal Commission), Journal of Thermal Biology. 2003. No 28. R. 75–106.

Jacobaeus O. De ranis et lacertis observations. Hafniae: Johannis M. Lieben., 1686. 174 p.

Legendre L. J., Davesne D. The evolution of mechanisms involved in vertebrate endothermy, Phil. Trans. R. Soc. B. 2020. Vol. 375 (1793). P. e20190136.

Martine G. Essays medical and philosophical. Milla: London, 1740. 392 p.

Pearson O., Brandford D. F. Thermoregulation of lizards and toad at high altitudes in Peru, Copeia. 1976. No. 1. P. 155–170.

Réaumur R. Mémoirs pour servir à l’Histoire des Insectes. Tome 2. Paris: d’Imprimerie Royal., 1736. 514 p.

Senanayake U. I., Siriwardana S., Weerakoon D. K., Wijesinghe M. R. Combating Extreme Tropical Seasonality: Use of Rock Crevices by the Critically Endangered Frog Nannophrys marmorata in Sri Lanka, Herpetological Conservation and Biology. 2019. Vol. 14, No 1. P. 261–268.

Soetbeer F. Uber die Körperwärme der poikilothermen Wirbeltiere, Arch. f. exp. Pathol. Bd. 1898. Vol. 40. R. 53–80.

Tigerstedt R. Die Production von Wärme und der Wärmehaushalt (S. 1–104), Handbuch der vergleichenden Physiologie herausg. von Winterstein., 1910. 1060 S.

Van ‘T Hoff J. H. Études de dynamique chimique. Amsterdam: F. Muller & Co., 1884. 236 p.

About animal partsPer. s grech. M.: Biomedgiz, 1937. 219 p.

Bahmet'ev P. I. The natural temperature of bees and insects in generalSPb.: Tip. V. Demakova, 1899. 11 p.

Berezov T. T. Korovkin B. F. Biological ChemistryM.: Medicina, 1998. 704 p.

Biochemistry, Red. E. P. Severin. M.: Izd. dom "GEOTAR-MED", 2004. 784 p.

Biological Encyclopedic DictionaryM.: Sovetskaya enciklopediya, 1986. 831 p.

Bogdanov O. P. Ecology of the reptiles of Central AsiaTashkent: Nauka, 1965. 259 p.

Cherlin V. A. Cellarius A. Yu. Dependence of the behavior of the phoorsa, Echis multisquamatus, Cherlin 1981, on temperature conditions in Southern Turkmenistan, Fauna i ekologiya amfibiy i reptiliy palearkticheskoy Azii. L.: Nauka, 1981. P. 96–108 (Trudy Zoologicheskogo instituta AN SSSR, t. 101).

Cherlin V. A. Comparison of the plate-tailed (Teratoscincus scincus scincus) and the fringe-toed (Crossobamon eversmanni) geckos, Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tehnicheskie nauki. 2013. T. 18, vyp. 6. P. 3110–3112.

Cherlin V. A. Evolution of thermobiological statuses in vertebrates. Article 2. Development of relations with temperature in vertebrates, Zhurnal obschey biologii. 2021. T. 82, No. 6. P. 459–477.

Cherlin V. A. Reptiles: temperature and ecologySaarbrücken: Lambert Academic Publishing, 2014. 442 p.

Cherlin V. A. Stabilization of high body temperature in the evolution of vertebrates, Uspehi sovremennoy biologii. 1990. T. 109, No. 3. P. 440–452.

Cherlin V. A. The relationship between ectothermy and endothermy in the evolution of vertebrates, Zhurnal obschey biologii. 2024. T. 85, No. 3. P. 244–266.

Cherlin V. A. The significance of changes in the intensity of conjugated and non-conjugated mitochondrial respiration in the evolution of vertebrates, Uspehi sovremennoy biologii. 2017. T. 137, No. 5. P. 479–497.

Gavrilov V. M. Ecological, functional, and thermodynamic prerequisites and consequences of homoiothermy on the example of avian energy research, Zhurnal obschey biologii. 2012. T. 73, No. 2. P. 88–113.

Golovanov V. K. Temperature criteria for the vital activity of freshwater fishM.: Poligraf-Plyus, 2013. 300 p.

Korosov A. V. A simple basking model of the common viper (Vipera berus L.), Sovremennaya gerpetologiya. 2008. T. 8, vyp. 2. P. 118–136.

Koshtoyanc H. S. Fundamentals of comparative physiologyT. 1. M.; L.: Izd-vo AN SSSR, 1950. 524 p.

Nil'sen K. Physiology of animalsT. 1. M.: Mir, 1982. 414 p.

Rubin A. B. Biophysics of cellular processesKn. 2. M.: Vysshaya shkola, 1987. 303 p.

Ryumin A. V. Temperature sensitivity of vertebrates and the biological path of origin of warm-blooded forms, Sbornik studencheskih nauchnyh rabot MGU. 1939. Vyp. 6. P. 55–84.

Ryumin A. V. The importance of temperature in the ontogenesis and phylogeny of animals, Uspehi sovremennoy biologii. 1940. T. 12, No. 3. P. 504–515.

Slonim A. D. Ecological physiology of animalsM.: Vysshaya shkola, 1971. 448 p.

Slonim A. D. Physiology of thermoregulationL.: Nauka. Leningr. otd-nie, 1984. 378 p.

Strel'nikov I. D. Light as a factor in animal ecology. The first article. The effect of solar radiation on the body temperature of some poikilothermic animals (to the ecology of the animals of the Kara-Kuma desert), Izvestiya Nauchnogo instituta imeni P. F. Lesgafta. 1934. T. 17–18. P. 313–372.

Strel'nikov I. D. The importance of solar radiation and the interaction of physical and geographical factors in the ecology of animals of various landscapes (To the question of the importance of physical geography in animal ecology), Problemy fizicheskoy geografii. 1948. No. 13. P. 145–155.

Strel'nikov I. D. The importance of solar radiation in the ecology of alpine reptiles, Zoologicheskiy zhurnal. 1944. T. 23, No. 5. P. 250–256.

The Great Encyclopedic Dictionary2000 URL: https://bcoreanda.com/ShowTreck.aspx?ID=459 (data obrascheniya: 12.03.2025).

Vernon H. M. The relation of the respiratory exchange of cold-blooded animals to temperature, J. Phisiol. 1897. Vol. 21 P. 443–496.

Vil'son P. V. Respiratory enzymesM.: Inostrannaya literatura, 1952. 416 p.

Displays: 21; Downloads: 5;