Maystrenko T., Rybak A. Cytotoxic effect of technogenically contaminated soil with heavy metals and radionuclides on E. fetida earthworms // Principy èkologii. 2024. № 3. P. 46‒60. DOI: 10.15393/j1.art.2024.15183


Issue № 3

Original research

pdf-version

Cytotoxic effect of technogenically contaminated soil with heavy metals and radionuclides on E. fetida earthworms

Maystrenko
   Tatyana
Ph.D., IB FRC Komi SC UB RAS, 28, Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia, maystrenko@ib.komisc.ru
Rybak
   Anna
Ph.D., IB FRC Komi SC UB RAS, 28, Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia, canewa.anuta@yandex.ru
Keywords:
earthworms
cytotoxicity
accumulation of neutral red
heavy metals
radionuclides
Summary: E. fetida earthworms from the laboratory population were exposed for 7 and 56 days in a substrate containing technogenically contaminated soil with metals/metalloids and radionuclides from the territory of the former radium industry. Cytotoxicity of soil was assessed by changes in the stability of lysosomal membranes of coelomocytes, the main immune effector cells of earthworms. It was shown that the analysis of the accumulation of neutral red by E. fetida coelomic cells is a sensitive tool in assessing the cytotoxicity of contaminated soil. With an increase in the concentrations of elements in the medium to sublethal, a decrease in the stability of the lysosomal membranes of coelomocytes was observed. The response of the biomarker depended on the intensity and duration of exposure. Analysis of dye accumulation by E. fetida lysosomes after 56 days of incubation in moderately contaminated substrates showed a higher sensitivity of the biomarker to the effects of soil components than in the 7-day experiment. With chronic exposure to earthworms, an increase in the concentrations of metals/metalloids and radionuclides in the soil was accompanied by a change in the distribution of subpopulations of coelomic fluid cells and a shift in the ratio towards elaeocytes and a corresponding decrease in the proportion of amoebocytes.

© Petrozavodsk State University

Received on: 12 July 2024
Published on: 23 September 2024

References

Curieses S. P., Sáenz M. E., Larramendy M., Di Marzio W. Ecotoxicological evaluation of foundry sands and cosmetic sludges using new earthworm biomarkers, Ecotoxicology. 2016. Vol. 25, No. 5. P. 914–923. DOI: 10.1007/s10646-016-1649-3

Adamowicz A. Morphology and ultrastructure of the earthworm Dendrobaena veneta (Lumbricidae) coelomocytes, Tissue Cell. 2005. Vol. 37, No. 2. P. 125–133. DOI: 10.1016/j.tice.2004.11.002

Bleeker E. A., van Gestel C. A. Effects of spatial and temporal variation in metal availability on earthworms in floodplain soils of the river Dommel, The Netherlands, Environ. Pollut. 2007. Vol. 148, No. 3. P. 824–832. DOI: 10.1016/j.envpol.2007.01.034

Bodó K., Kellermayer Z., László Z., Boros Á., Kokhanyuk B., Németh P., Engelmann P. Injury-Induced Innate Immune Response During Segment Regeneration of the Earthworm, Eisenia andrei, Int. J. Mol. Sci. 2021. Vol. 22, No. 5. Article number: 2363. DOI: 10.3390/ijms22052363

Curieses S. P., Sáenz M. E., Alberdi J. L., Martinez S., Larramendy M. L., Di Marzio W. Genotoxic evidences of glyphosate and chlorpyriphos on Eisenia fetida coelomocytes, Advances Environ. Stud. 2018. Vol. 2, No. 2. P. 82–90.

Echevarria G., Sheppard M. I., Morel J. Effect of pH on the sorption of uranium in soils, J. Environ Radioact. 2001. Vol. 53, No. 2. P. 257–264. DOI: 10.1016/s0265-931x(00)00116-8

Eyambe G. S., Goven A. J., Fitzpatrick L. C., Venables B. J., Cooper E. L. A non-evasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxic studies, Lab. Anim. 1991. Vol. 25. P. 61–67.

Geras'kin S., Yoschenko V., Bitarishvili S., Makarenko E., Vasiliev D., Prazyan A., Lychenkova M., Nanba K. Multifaceted effects of chronic radiation exposure in Japanese red pines from Fukushima prefecture, Sci. Total. Environ. 2021. Vol. 763. Article number: 142946. DOI: 10.1016/j.scitotenv.2020.142946

Giovanetti A., Fesenko S., Cozzella M. L., Asencio L. D., Sansone U. Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium, J. Environ. Radioact. 2010. Vol. 101, iss. 6. P. 509–516. DOI: 10.1016/j.jenvrad.2010.03.003

Hønsi T. G., Stubberud H. E., Andersen S., Stenersen J. Lysosomal fragility in earthworms (Eisenia veneta) exposed to heavy metal contaminated soils from two abandoned pyrite ore mines in Southern Norway, Water. Air. & Soil. Pollution. 2003. Vol. 142. P. 27–37. DOI: 10.1023/A:1022003809634

Höckner M., Piechnik C. A., Fiechtner B., Weinberger B., Tomanek L. Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes, Int. J. Mol. Sci. 2020. Vol. 21, No. 2. Article number: 599. DOI: 10.3390/ijms21020599

Hattab S., Boughattas I., Cappello T., Zitouni N., Touil G., Romdhani I., Livet A., Bousserrhine N., Banni M. Heavy metal accumulation, biochemical and transcriptomic biomarkers in earthworms Eisenia andrei exposed to industrially contaminated soils from south-eastern Tunisia (Gabes Governorate), Sci. Total. Environ. 2023. Vol. 20, No. 887. Article number: 163950. DOI: 10.1016/j.scitotenv.2023.163950

Irizar A., Rodríguez M. P., Izquierdo A., Cancio I., Marigómez I., Soto M. Effects of soil organic matter content on cadmium toxicity in Eisenia fetida: Implications for the use of biomarkers and standard toxicity tests, Arch. Environ. Contam. Toxicol. 2015. Vol. 68. P. 181–192. DOI: 10.1007/s00244-014-0060-4

Karczewska A., Gruss I., Szopka K., Dradrach A., Twardowski J., Twardowska K. Arsenic toxicity to earthworms in soils of historical As mining sites: an assessment based on various endpoints and chemical extractions, Environ. Geochem. Health. 2023. Vol. 45. P. 6713–6726. DOI: 10.1007/s10653-023-01665-x

Kurek A., Homa J., Kauschke E., Płytycz B. Characteristic of coelomocytes of the stubby earthworm, Allolobophora chlorotica (Sav.), European Journal of Soil Biology. 2007. Vol. 43. P. S121–S126. DOI: 10.1016/j.ejsobi.2007.08.051

Lebedev S. V. Sizova E. A. Gavrish I. Trophometabolic potential of Esenia fetida Savigny, 1826 (Oligochata, Lumbricidae) caused by copper nanoparticles and copper oxide in the soil, Povolzhskiy ekologicheskiy zhurnal. No. 2. P. 147–156.

Lee B. T., Kim K. W. Lysosomal membrane response of earthworm, Eisenia fetida, to arsenic contamination in soils, Environ. Toxicol. 2009. Vol. 24, No. 4. P. 369–376. DOI: 10.1002/tox.20441

Lourenço J. I., Pereira R. O., Silva A. C., Morgado J. M., Carvalho F. P., Oliveira J. M., Malta M. P., Paiva A. A., Mendo S. A., Gonçalves F. J. Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides, J. Hazard. Mater. 2011. Vol. 18, No. 1. P. 788–795. DOI: 10.1016/j.jhazmat.2010.11.073

Lourenço J., Pereira R., Silva A., Carvalho F., Oliveira J., Malta M., Paiva A., Gonçalves F., Mendo S. Evaluation of the sensitivity of genotoxicity and cytotoxicity endpoints in earthworms exposed in situ to uranium mining wastes, Ecotoxicol. Environ. Saf. 2012. Vol. 75, No. 1. P. 46–54. DOI: 10.1016/j.ecoenv.2011.08.024

Maboeta M. S., Oladipo O. G., Botha S. M. Ecotoxicity of Mine Tailings: Unrehabilitated Versus Rehabilitated, Bull. Environ. Contam. Toxicol. 2018. Vol. 100, No. 5. P. 702–707. DOI: 10.1007/s00128-018-2322-8

Maity S., Banerjee R., Goswami P., Chakrabarti M., Mukherjee A. Oxidative stress responses of two different ecophysiological species of earthworms (Eutyphoeus waltoni and Eisenia fetida) exposed to Cd-contaminated soil, Chemosphere. 2018. Vol. 203. P. 307–317. DOI: 10.1016/j.chemosphere.2018.03.189

Maystrenko T., Rybak A. Radium uptake by earthworms E. fetida after exposure to contaminated soil, J. Environ. Radioact. 2023. Vol. 257. Article number: 107085. DOI: 10.1016/j.jenvrad.2022.107085

Medina S., Lauer F. T., Castillo E. F., Bolt A. M., Ali A. S., Liu K. J., Burchiel S. W. Exposures to uranium and arsenic alter intraepithelial and innate immune cells in the small intestine of male and female mice, Toxicol. Appl. Pharmacol. 2020. Vol. 403. Article number: 115155. DOI: 10.1016/j.taap.2020.115155

OECD Guideline for the testing of chemicals. Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei). V. 222 OECD. Paris, 2016.

OECD. Guideline for testing of chemicals. Earthworm. Acute Toxicity Tests. V. 207 OECD. Paris, 1984.

Orekhova N. A. Hepatic effects of low-dose rate radiation in natural mouse populations (Apodemus uralensis and Apodemus agrarius): comparative interspecific analysis, Int. J. Radiat. Biol. 2020. Aug. Vol. 96, No. (8). P. 1038–1050. DOI: 10.1080/09553002.2020.1770362

Reinecke A. J., Reinecke S. A. The influence of exposure history to lead on the lysosomal response in Eisenia fetida (Oligochaeta), Ecotoxicol. Environ. Saf. 2003. Vol. 55, No. 1. P. 30–37. DOI: 10.1016/s0147-6513(02)00086-6

Saggioro E. M., do Espírito Santo D. G., Sales Júnior S. F., Hauser-Davis R. A., Correia F. V. Lethal and sublethal effects of acetamiprid on Eisenia andrei: Behavior, reproduction, cytotoxicity and oxidative stress, Ecotoxicol. Environ. Saf. 2019. Vol. 183. P. 109572. DOI: 10.1016/j.ecoenv.2019.109572

Soil Atlas of the Komi Republic, Pod red. G. V. Dobrovol'skogo, A. I. Taskaeva, I. V. Zaboevoy. Syktyvkar: OOO «Komi respublikanskaya tipografiya», 2010. 356 p.

Stanovova M. V. Morphology, cytogenesis and functions of Annelida coelomocytes, Invert. Zool. 2019. Vol. 16, No. 3. P. 254–282. DOI: 10.15298/invertzool.16.3.06

Svendsen C., Weeks J. M. Relevance and applicability of a simple earthworm biomarker of copper exposure. I. Links to ecological effects in a laboratory study with Eisenia andrei, Ecotoxicol. Environ. Saf. 1997a. Vol. 36, No. 1. P. 72–79. DOI: 10.1006/eesa.1996.1491

Svendsen C., Weeks J. M. Relevance and applicability of a simple earthworm biomarker of copper exposure. II. Validation and applicability under field conditions in a mesocosm experiment with Lumbricus rubellus, Ecotoxicol. Environ. Saf. 1997b. Vol. 36, No. 1. P. 80–88. DOI: 10.1006/eesa.1996.1492

Thomas D. J., Li J., Waters S. B., Xing W., Adair B. M., Drobna Z., Devesa V., Styblo M. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals, Exp. Biol. Med. (Maywood). 2007. Vol. 232, No. 1. P. 3–13.

Urionabarrenetxea E., Garcia-Velasco N., Marigómez I., Soto M. Effects of elevated temperatures and cadmium exposure on stress biomarkers at different biological complexity levels in Eisenia fetida earthworms, Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2020. Vol. 231. Article number: 108735. DOI: 10.1016/j.cbpc.2020.108735

Vivas F., Balladares S., Lobos M. G., Gaete H. Assessment toxicity of soils from areas with mining activity through the stability of the lysosomal membrane and avoidance behavior in the earthworm Eisenia fetida, Bull. Environ. Contam. Toxicol. 2022. Vol. 110, No. 1. Article number: 13. DOI: 10.1007/s00128-022-03662-9

Vullo A. I., Vullo D. L., Basack S. B. Assessment of intensive periurban agriculture soil quality applying biomarkers in earthworms, J. Environ. Manage. 2023. Vol. 344. Article number: 118535. DOI: 10.1016/j.jenvman.2023.118535

Wang Z., Cui Z. Accumulation, biotransformation, and multi-biomarker responses after exposure to arsenic species in the earthworm Eisenia fetida, Toxicol. Res. (Camb.). 2016. Vol. 5, No. 2. P. 500–510. DOI: 10.1039/c5tx00396b

Yadav R., Kumar R., Kumar Gupta R., Kaur T., Kiran, Kour A., Kaur S., Rajput A. Heavy metal toxicity in earthworms and its environmental implications: A review, Environmental Advances. 2023. Vol. 12. Article number: 100374. DOI: 10.1016/j.envadv.2023.100374

Zhang W., Liu K., Li J., Chen L., Lin K. Uptake and depuration kinetics of lead (Pb) and biomarker responses in the earthworm Eisenia fetida after simultaneous exposure to decabromodiphenyl ether (BDE209), Ecotoxicol. Environ. Saf. 2015. Vol. 113. P. 45–51. DOI: 10.1016/j.ecoenv.2014.11.014

Česynaitė J., Praspaliauskas M., Pedišius N., Sujetovienė G. Biological assessment of contaminated shooting range soil using earthworm biomarkers, Ecotoxicology. 2021. Vol. 30, No. 10. P. 2024–2035. DOI: 10.1007/s10646-021-02463-w

Displays: 107; Downloads: 14;