Isakova K., Kalinkina N. Studying the spatial and temporal dynamics of water surface temperature of Lake Onega by remote sensing methods // Principy èkologii. 2023. № 4. P. 11‒26. DOI: 10.15393/j1.art.2023.14422


Issue № 4

Original research

pdf-version

Studying the spatial and temporal dynamics of water surface temperature of Lake Onega by remote sensing methods

Isakova
   Ksenia Valeryevna
Northern Water Problems Institute, KRC RAN, 50, Aleksander Nevsky st., 185030 Petrozavodsk, Republic of Karelia Russia, ksusha_isakova@mail.ru
Kalinkina
   Natalia Mikhailovna
DSc, Northern Water Problems Institute, KRC RAN, 50, Aleksander Nevsky st., 185030 Petrozavodsk, Republic of Karelia Russia, cerioda@mail.ru
Keywords:
lake Onega
water surface temperature
long-term trends
seasonal trends
Summary: The materials on the water surface temperature of Lake Onega for a period of 35 years (from 1985 to 2020) were analyzed. Remote sensing data from two Internet sources with free access were used. Verification of data on full-scale water surface temperature measurements carried out from the ship was performed. A database on water surface temperature was compiled for 142 cells of the lake’s water area measuring 8*8 km. The equations of linear long-term trends in increasing the average monthly water surface temperature were calculated. The estimates obtained by remote sensing methods for the studied period for Lake Onega turned out to be close to the results of field observations. Cartograms were constructed demonstrating the severity of these trends in different parts of the Lake Onega water area. The most significant changes affected the Povenetsky Bay and the central part of Lake Onega. In these areas, lake waters began to heat up faster in early summer and cool down longer in autumn.

© Petrozavodsk State University

Published on: 23 December 2023

References

Austin J. A., Colman S. M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice‐albedo feedback, Geophysical research letters. 2007. Vol. 34, No 6. P. 1–5. DOI: 10.1029/2006GL029021

Efremova T. V. Pal'shin N. I. Long-term variability of water temperature and ice phenology, Krupneyshie ozera-vodohranilischa Severo-Papada evropeyskoy territorii Rossii: sovremennoe sostoyanie i izmenenie ekosistem pri klimaticheskih i antropogennyh vozdeystviyah. Petrozavodsk: Karel'skiy nauchnyy centr RAN, 2015. P. 38–44.

Efremova T. V. Thermal regime, Onezhskoe ozero: Atlas, Pod red. N. N. Filatova. Petrozavodsk: Karel'skiy nauchnyy centr RAN, 2010. P. 55–66.

Filatov N. N. Baklagin V. N. Efremova T. V. Pal'shin N. I. Variability of water temperature and characteristics of the ice cover of Lake Ladoga and Lake Onega, Diagnoz i prognoz termogidrodinamiki i ekosistem velikih ozer Rossii, Pod red. N. N. Filatova. Petrozavodsk: Karel'skiy nauchnyy centr RAN, 2020. P. 53–67.

Filatov N., Baklagin V., Efremova T., Nazarova L., Palshin N. Climate change impacts on the watersheds of Lakes Onego and Ladoga from remote sensing and in situ data, Inland Waters. 2019. Vol. 9. P. 130–141. DOI: 10.1080/20442041.2018.1533355

Finland’s Sixth National Communication under the United Nations Framework Convention on Climate Change. Ministry of the Environment and Statistics, Ed. Monni S. Finland, Helsinki: Statistics Finland, 2013. 314 p. URL: https://unfccc.int/files/national_reports/annex_i_natcom/submitted_natcom/application/pdf/fi_nc6%5B1%5D.pdf

Kalinkina N. M. Tekanova E. V. Efremova T. V. Pal'shin N. I. Nazarova L. E. Baklagin V. N. Zdorovennov R. E. Smirnova V. S. Response of Lake Onega ecosystem in the spring – summer period to abnormally high air temperature in winter 2019/2020, Izvestiya RAN. Seriya geograficheskaya. 2021. T. 85, No. 6. P. 888–899. DOI: 10.31857/S2587556621060078

Kalinkina N. M. Tekanova E. V. Syarki M. T. Georgiev A. P. Isakova K. V. Tolstikov A. V. Zdorovennov R. E. Smirnova V. S. Limnological indicators of the state of Lake Onega and the Vygozersky reservoir: water temperature, chlorophyll a concentration, phytoplankton production: Svidetel'stvo o registracii bazy dannyh No. 2023621189, Pravoobladatel': Federal'noe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Federal'nyy issledovatel'skiy centr «Karel'skiy nauchnyy centr Rossiyskoy akademii nauk» (RU). Data registracii v reestre baz dannyh 12.04.2023.

Kilpatrick K. A., Podestá G. P., Evans R. H. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database, Journal of Geophysical Research. 2001. Vol. 106, No C5. P. 9179–9197. DOI: 10.1029/1999JC000065

NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group: MODIS-Aqua Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. URL: http://dx.doi.org/10.5067/AQUA/MODIS_OC.2014.0

Nazarova L. E. Isakova K. V. Kalinkina N. M. Balaganskiy A. F. The effect of climate warming on the winter flow of the Shuya River and the consequences for the zoobenthos of Lake Onega, Izvestiya RGO. 2022. T. 154, No. 1. P. 28–36. DOI: 10.31857/S0869607122010086

Nazarova L. E. The current state and variability of climate in the catchments of Lake Onega and the Vygozersko-Onda reservoir, Krupneyshie ozera-vodohranilischa Severo-Zapada evropeyskoy territorii Rossii: sovremennoe sostoyanie i izmenenie ekosistem pri klimaticheskih i antropogennyh vozdeystviyah. Petrozavodsk: Karel'skiy nauchnyy centr RAN, 2015. P. 10–20.

Nazarova L. E. Variability of average long-term air temperature values in Karelia, Izvestiya RGO. 2014. T. 146. Vyp. 4. P. 27–33.

Petrov M. P. Thermal regime, Ekosistema Onezhskogo ozera i tendencii ee izmeneniya. L.: Karel'skiy filial AN SSSR, 1990. P. 32–37.

R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna: Austria, 2012. URL: http://www.r-project.org/

Räisänen J., Alexandersson H. A probabilistic view on recent and near future climate change in Sweden, Tellus A: Dynamic Meteorology and Oceanography. 2003. P. 113–125. DOI: 10.3402/tellusa.v55i2.12089

Rossum G. van. Python tutorial Technical Report. Amsterdam: Centrum voor Wiskunde en Informatica, 1995. 65 p. URL: http://ir.cwi.nl/pub/5007/05007D.pdf

The second evaluation report of Roshydromet on climate change and its consequences on the territory of the Russian Federation. General summary. M.: Rosgidromet, 2014. 58 p.

Woolway R. I., Merchant C. J. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability, Scientific Reports. 2017. Vol. 7. No 1. P. 4130. DOI: 10.1038/s41598-017-04058-0

Woolway R. I., Merchant C. J. Intralake heterogeneity of thermal responses to climate change: A study of large Northern Hemisphere lakes, Journal of Geophysical Research: Atmospheres, 2018. Vol. 123. P. 3087–3098. DOI: 10.1002/2017JD027661

Zhong Y., Notaro M., Vavrus S. J., Foster M. J. Recent accelerated warming of the Laurentian Great Lakes: physical drivers, Limnol. Oceanogr. 2016. Vol. 61. P. 1762–1786. DOI: 10.1002/lno.10331

Displays: 239; Downloads: 57;