Sidorova N., Kuchko A. Features of associative symbiosis on the example of intestinal bacterioflora of rainbow trout (Parasalmo mykiss Walbaum) // Principy èkologii. 2023. № 4. P. 50‒60. DOI: 10.15393/j1.art.2023.14342


Issue № 4

Original research

pdf-version

Features of associative symbiosis on the example of intestinal bacterioflora of rainbow trout (Parasalmo mykiss Walbaum)

Sidorova
   Natalia Anatolyevna
PhD, Petrozavodsk State University, 33, Lenin Ave., Petrozavodsk, Republic of Karelia, Russia, 185910, fagafon@yandex.ru
Kuchko
   Alexander Alexeyevich
Petrozavodsk State University, 33, Lenin Ave., Petrozavodsk, Republic of Karelia, Russia, 185910, ufer1996@yandex.ru
Keywords:
associative symbiosis
dominants
subdominants
intentinal bacterioflora
minor microsymbionts
rainbow trout
Summary: The features of associative symbiosis were studied on the example of intestinal bacterioflora of three age groups of rainbow trout grown in conditions of cage culture in the waters of Lake Ladoga. Methods of microbiological analysis and Sanger genome-wide sequencing were used to describe the structure of associative symbiosis of trout intestine. To identify the significance of various bacterial taxa in associative symbiosis, a series of experiments on co-culture and evaluation of the viability of associates were performed. As a result of microbiological analysis and genotyping, 310 bacterial species belonging to 37 genera were described. Due to a comparative study of the composition of the intestinal microflora, it was found that firmicut bacteria dominated in the age group 1+, and proteobacteria dominated in the age groups 2+ and 3+. Representatives of 11 genera were classified as constant taxa, for which a sequential change of dominant, subdominant and minor microsymbionts was described, depending on the age group of trout. For the age group 1+ the priority of taxon changes consisted of the sequence of Eubacterium  Bacteroides  Micrococcus  Proteus  Fusobacterium, for the age group 2+ the sequence was: Bacillus  Propionibacterium  Bacteroides  Fusobacterium  Citrobacter, and for the age group 3+ the sequence was: Bacillus  Proteus  Flexibacter  Campylobacter Cetobacterium. As a result of an experiment on the co-culture of intestinal bacterioflora of one-year-old and two-year-old trout individuals, a mutually stimulating effect between the associates was described. This is evidenced by the high values of the optical density of the culture solution, the long-term linear growth, the constancy of the rate of biomass accumulation and the achievement of a large number of viable cells in the association.

© Petrozavodsk State University

Received on: 13 November 2023
Published on: 12 January 2024

References

Austin B. The Bacterial Microflora of Fish, Sci. World J. 2002. No. 2. R. 558–572.

Bakanov A. I. Quantitative assessment of dominance in ecological communities, Kolichestvennye metody ekologii i gidrobiologii. Tol'yatti: SamNC, 2005. P. 37–67.

Bergeyʼs Manual of Systematic Bacteriology. New York: Springer Science & Business Media, 2001. 1388 r.

Bordenstein S. R., Theis K. R. Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes, PLoS Biol. 2015. No. 13 (8). R. 202–226.

Buharin O. V. Lobakova E. S. Nemceva N. V. Cherkasov S. V. Associative symbiosis. Ekaterinburg: UrO RAN, 2007. 264 p.

Features of gastric digestion in ruminants, Nauchnoe obozrenie. Biologicheskie nauki. 2017. No. 2. P. 153–156.

Guidelines for veterinary and sanitary control of breeding fish farms: scientific and practical publishing house. M.: Izd-vo FGBNU «Rosinformagroteh», 2018. 52 p.

Hansen G. H., Olafsen J. A. Bacterial Interactions in Early Life Stages of Marine Cold Water Fish, Microbiol. Ecol. 1999. Vol. 38. P. 1–26.

Helfman G. S., Collette B. B., Facey D. E., Bowen B. W. The diversity of fishes. Second Edition. Malaysia: Vivar Printing, 2009. R. 217–284.

Izvekova G. I., Izvekov E. I., Plotnikov A. O. Symbiotic Microflora in Fishes of Different Ecological Groups, Biology Bulletin. 2007. Vol. 34, No. 6. R. 610–618.

Jankauskiene R. Defence Mechanisms in Fish: Lactobacillus Genus Bacteria of Intestinal Wall in Feeding and Hibernating Carps, Ekologija (Vilnius). 2000. No. 1. R. 3–6.

Lobakova E. S. Associative symbiology on the example of plant symbioses, Vestnik Moskovskogo universiteta. Ser. 16. Biologiya. 2006. No. 4. P. 9–16.

Lusta K. A. Fihte B. A. Methods for determining the viability of microorganisms. Puschino: ONTI NCBI, 1990. 186 p.

McGrady-Steed J., Harris P. M., Morin P. J. Biodiversity regulates ecosystem predictability, Nature. 1997. Vol. 390. R. 162–165.

Methodological guidelines for the laboratory diagnosis of pseudomonoses of fish. M.: Ministerstvo sel'skogo hozyaystva i prodovol'stviya RF, 1998. 16 p.

Methods of general bacteriology, Pod. red. F. Gerharda. T. 1. M.: Mir, 1983. 340 p.

Minich J. J., Petrus S., Michael J. D., Michael T. P., Knight R., Allen E. E. Temporal, Environmental, and Biological Drivers of the Mucosal Microbiome in a Wild Marine Fish, Scomber japonicus. mSphere. 2020a. No. 5 (3). R. 123–134.

Minich J. J., Poore G. D., Jantawongsri K., Johnston C., Bowie K., Bowman J., et al. Microbial Ecology of Atlantic Salmon (Salmo salar) Hatcheries: Impacts of the Built Environment on Fish Mucosal Microbiota, Appl. Environ. Microbiol. 2020b. No. 86 (12). R. 207–211.

Nemceva N. V. Symbiotic interactions of hydrobionts and their use to assess the ecological state of reservoirs in the monitoring system, Vestnik Orenburgskogo gosudarstvennogo universiteta. 2015. No. 10 (185). P. 229–231.

Provorov N. A. The genetic and evolutionary foundations of the doctrine of symbiosis, Zhurnal obschey biologii. 2001. T. 62. P. 472–495.

Riiser E. S., Haverkamp T. H. A., Varadharajan S., Borgan O., Jakobsen K. S., Jentoft S., et al. Metagenomic Shotgun Analyses Reveal Complex Patterns of Intra- and Interspecific Variation in the Intestinal Microbiomes of Codfishes, Appl. Environ. Microbiol. 2020. No. 86 (6). R. 106–113.

Ringø E., Olsen R.E., Mayhew T. M., Myklebust R. Electron Microscopy of the Intestinal Microflora of Fish, Aquaculture. 2003. Vol. 227. P. 395–415.

Ringo E., Birkbeck T. H. Intestinal microflora of fish andfry: A review, Aquac Res. 1999. No. 30 (2). R. 73–93.

Sanger F., Nidclen S., Coulson A. R. DNA sequencing with chain-remmanng inhibitors, Proc. Natl. Acad. Sc. USA. 1977. No. 84. R. 5463–5467.

Stepanova T. N. Nemceva N. V. Structural organization of the phytoplankton community of reservoirs from the standpoint of the concept of associative symbiosis, Vestnik OGU. 2009. No. 12 (106). P. 71–76.

Sugita H., Shen K. Z., North R. A. 5-Hydroxytryptamine is a fast excitatory transmitter at 5-HT, receptors in rat amygdala, Fish. Sci. 1992. No. 8. R. 199–203.

Sugita H., Shibuya K., Hanada H., Deguchi Y. Anti-bacterial Abilities of Intestinal Microflora of River Fish, Fish. Sci. 1997. Vol. 63, No. 3. R. 378–383.

Woodhams D. C., Bletz M. C., Becker C. G., Bender H. A., Buitrago-Rosas D., Diebboll H., et al. Host-associated microbiomes are predicted by immune system complexity and climate, Genome Biol. 2020. No. 21 (1). R. 23.

Displays: 466; Downloads: 147;