Korosov A. Neural networks for ecology: introduction // Principy èkologii. 2023. № 3. P. 76‒96. DOI: 10.15393/j1.art.2023.14002


Issue № 3

Methods of ecological investigations

pdf-version

Neural networks for ecology: introduction

Korosov
   Andrey Victorovich
DSc, professor, Petrozavodsk State University, Petrozavodsk, Lenin st., 33, korosov@psu.karelia.ru
Keywords:
neural network
neuron
modeling
tuning
ecology
zoology
Summary: A variant of explaining the composition and structure of the neural network is considered, starting from the concept of "regression equation". Focusing on the method more familiar to ecologists (regression analysis), the structural and functional features of the "neuron" and the artificial neural network are shown. The concepts of linear and curvilinear regression, logit, neuron, neural network modeling and algorithms for adjusting the structural and quantitative parameters of models are gradually deepening and expanding. The key terms of the technology under consideration such as covariate, bias, neuron, layer, activation function, training, retraining are defined. In concrete examples, some areas of application of this method in animal ecology are shown. The solution of problems typical for animal ecology of diagnosing the status (sex) of animals by quantitative characteristics and assessing the suitability of certain biotopes for animal habitation with the help of a neural network is considered. A list of references with examples of the use of networks for solving environmental problems is given. Listings of calculations performed in the environment of the R program using functions from the neural net package are given. Data files are attached to the text to perform the training on the presented codes.

© Petrozavodsk State University

Reviewer: B. N. Yakimov
Received on: 31 August 2023
Published on: 04 October 2023

References

Ashirali A. Iskustvennye Neyronnye seti na R, Rpubs by RStudio. URL: https://rpubs.com/alibek123/nn_neuralnet (data obrascheniya: 10.08.2023).

Ivanter E. V. Korosov A. V. Introduction to quantitative biology: Uchebnoe posobie. 3-e izd. Petrozavodsk: Izd-vo PetrGU, 2014. 298 p. URL: https://www.twirpx.org/file/584305/ (data obrascheniya: 26.07.2023).

Kallan R. Basic concepts of neural networks. M.: Vil'yams, 2001. 288 p. URL: https://ru.djvu.online/file/jvqr1unYgqfxT (data obrascheniya: 26.07.2023).

Korosov A. V. Gorbach V. V. Computer processing of biological data: Uchebnoe elektronnoe posobie dlya obuchayuschihsya po napravleniyam podgotovki bakalavriata «Biologiya» i «Ekologiya». Petrozavodsk: Izd-vo PetrGU, 2017. 96 p. URL: https://www.twirpx.org/file/2501217/ (data obrascheniya: 26.07.2023).

Korosov A. V. Gorbach V. V. Practical introduction to the R environment: Uchebnoe elektronnoe posobie dlya obuchayuschihsya po napravleniyam podgotovki «Biologiya» i «Ekologiya i prirodopol'zovanie». Petrozavodsk: Izd-vo PetrGU, 2020. 117 p. URL: https://disk.yandex.ru/i/skOj2DT4UTIWGQ (data obrascheniya: 26.07.2023).

Korosov A. V. Kalinkina N. M. Quantitative methods of ecological toxicology. Petrozavodsk, 2003. 56 p. URL: https://www.twirpx.org/file/88755/(data obrascheniya: 26.07.2023).

Korosov A. V. Distribution of the common viper on the islands of the Kizhi archipelago, Trudy KarNC RAN. Ser. Biogeografiya. Vyp. 9. Petrozavodsk, 2009. P. 102–108. URL: http://transactions.krc.karelia.ru/publ.php?plang=r&id=5397 (data obrascheniya: 07.26.2023).

Machine learning in R: expert techniques for predictive analysis, Habr. 2020. URL: https://habr.com/ru/companies/piter/articles/496256/(data obrascheniya: 26.07.2023).

Mastickiy S. E. Shitikov V. K. Statistical analysis and data visualization using R. M.: DMK Press, 2015. 496 p. URL: http://www.ievbras.ru/ecostat/Kiril/R/MS_2014/MS_2014.pdf (data obrascheniya: 12.02.2021).

Menshutkin V. V. The art of modeling. Petrozavodsk; SPb., 2010. 4119 p. URL: http://resources.krc.karelia.ru/krc/doc/publ2010/Model.pdf (data obrascheniya: 12.02.2021).

Raputa V. F. Lezhenin A. A. Yaroslavceva T. V. Devyatova A. Yu. Experimental and numerical studies of pollution of the snow cover in Novosibirsk in the vicinity of thermal power plants, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya «Nauki o Zemle». 2015. T. 12. P. 77–93. URL: http://izvestiageo.isu.ru/ru/journal?id=14(data obrascheniya: 12.02.2021).

Shitikov V. K. Mastickiy S. E. Classification, regression and other Data Mining algorithms using R. 2017. 351 p. URL: https://www.twirpx.org/file/2203014/, https://ranalytics.github.io/data-mining/, https://github.com/ranalytics/data-mining (data obrascheniya: 12.02.2023).

Shitikov V. K. Rozenberg G. S. Zinchenko T. D. Quantitative hydroecology: methods of system identification. Tol'yatti: IEVB RAN, 2003. 463 p. URL: https://www.studmed.ru/shitikov-vk-rozenberg-gs-zinchenko-td-kolichestvennaya-gidroekologiya-metody-sistemnoy-identifikacii_7b9fe07127d.html (data obrascheniya: 26.07.2023).

Shitikov V. K. Rozenberg G. S. Randomization and bootstrap: statistical analysis in biology and ecology using R. Tol'yatti: Kassandra, 2013. 314 p. URL: http://www.ievbras.ru/download/Random.pdf (data obrascheniya: 12.02.2023).

Shitikov V. K. Models of forecasting. 2023. URL: https://stok1946.blogspot.com/2023/01/blog-post.html (data obrascheniya: 26.07.2023).

Shmidt R. Tevs G. Human Physiology: V 3 t. T. 1. M.: Mir, 1996. 323 p. URL: https://www.twirpx.org/file/1620558/grant/ (data obrascheniya: 26.07.2023).

Sholle F. Deep learning with R and Keras. M.: DMK Press, 2022. 646 p. URL: https://coollib.net/b/627871-fransua-sholle-glubokoe-obuchenie-s-r-i-keras(data obrascheniya: 26.07.2023).

Skvorcov V. V. Modeling of long-term dynamics of abundance of populations of larvae Chironomus plumosus (L., 1758) and Ch. Anthracinus Zett., 1860 using artificial neural networks (Lake Krasnoe, Karelian Isthmus, Leningrad Region), Amurskiy zoologicheskiy zhurnal. 2018. T. 10, No. 2. P. 136–148. URL: https://azjournal.ru/index.php/azjournal/article/view/33 (data obrascheniya: 26.07.2023).

The R Project for Statistical Computing. 2023. URL: https://www.r-project.org/ (data obrascheniya: 26.07.2023).

Yakimov V. N. Fundamentals of biomedical and environmental data analysis in the R environment. Ch. 1–2: Uchebnoe posobie. N. Novgorod: Nizhegorodskiy gosuniversitet, 2019. 97 p., 168 p. URL: https://www.elibrary.ru/author_items.asp?authorid=141418 (data obrascheniya: 26.07.2023).

Displays: 1222; Downloads: 172;