Rozenberg Gennady Samuilovich | D.Sc., Institute of Ecology of the Volga River Basin of the RAS – branch of the Samara Federal Research Center of the RAS, 445003, Rissia, Samara region, Togliatti, Komzin st.,10, genarozenberg@yandex.ru |
Kostina Natalia Victorovna | D.Sc., Institute of Ecology of the Volga River Basin of the RAS – branch of the Samara Federal Research Center of the RAS, 445003, Russia, Samara region, Komzin st., 10, knva2009@yandex.ru |
Rozenberg Anastasia Gennadyevna | PhD, Institute of Ecology of the Volga River Basin of the RAS – branch of the Samara Federal Research Center of the RAS, 445003, Samara region, Togliatti, Komzin st., 10, chicadivina@yandex.ru |
Keywords: diffuse models agent-oriented migration competition heterogeneous environment population waves |
Summary: Three paradigms of cognition of the world are presented: Laplacian determinism (“Laplace's demon”), stochasticism and chaos-self-organization (uncertainty in the dynamics of the behavior of wildlife objects). The formation of the mathematical theory of population dynamics within these three paradigms is discussed. A metapopulation is a spatially structured population that persists over time as a set of spatially separated, local, interacting populations with limited settlement between them. The principle of migration is the main mechanism that distinguishes the theory of metapopulations from the standard theory of population dynamics, which analyzes mortality and fertility within a single population. The compromise between competition and colonization allows competing species to coexist in a heterogeneous environment. Quantitative approaches make it possible to take into account other mechanisms and more general spatial variations. Stochastic and deterministic models of the dynamics of metapopulations are discussed. They are point model (parameters change only in one variable), diffuse one (taking into account the diffusion exchange between two habitats identical in their ecological characteristics) and agent-based models (based on the individual behavior of agent-objects and operating with parameter values averaged for a group of similar objects), etc. The main properties of individual agents are: “intelligence” (learnability), location in time and space (a certain “habitat” is set), and the presence of a life goal. © Petrozavodsk State University |
Published on: 16 November 2023 |
Antonov A. I. Goryaynov A. G. Big newest encyclopedia of fishing. M.: LitRes, 2010. 660 p.
Antonov E. V. Kurichev N. K. Treyvish A. I. Studies of the urban system and agglomerations in Russia, Izvestiya RAN. Ser. geograf. 2022. T. 86, No. 3. P. 310–331.
Assessment of the state and sustainability of forests in the green zone of the city of Togliatti, Otv. red. E. G. Mozolevskaya, G. P. Rozenberg. Tol'yatti: IEVB RAN, 1995. 92 p.
Bazykin A. D. Nonlinear dynamics of interacting populations. M.; Izhevsk: Institut komp'yuternyh tehnologiy, 2003. 368 p.
Bondar' M. G. Long-term dynamics and current state of the forest reindeer (Rangifer tarandus valentinae) population of the Altai-Sayan mountainous country, Vestnik KrasGAU. 2015. No. 5. P. 40–44.
Borshchev A., Filippov A. From system dynamics and discrete event to practical agent based modeling: reasons, techniques, tools, The 22nd International Conference of the System Dynamics Society. Oxford (England): System Dynamics Society, 2004. 22 p. URL: http://www.systemdynamics.org/conferences/2004/SDS_2004/PAPERS/381BORSH.pdf.
Bridle J. R., Polechová J., Kawata M., Butlin R. K. Why is adaptation prevented at ecological margins? New insights from individual-based simulations, Ecol. Letter. 2010. Vol. 13. P. 485–494.
Brusilovskiy P. M. Rozenberg G. S. On the possibility of constructing a model that satisfactorily describes fluctuations in one real predator-prey system, Dinamika ekologo-ekonomicheskih sistem. Novosibirsk: Nauka, 1981. P. 84–91.
Chernova N. M. Bylova A. M. General ecology. Textbook. M.: Drofa, 2004. 416 p.
Clark J. R., Daines S. J., Lenton T. M., Watson A. J., Williams H. T. P. Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters, Ecol Modelling. 2011. Vol. 222. P. 3823–3837.
Clark M. E., Rose K. A. Individual-based model of stream-resident rainbow trout and brook char: model description, corroboration, and effects of sympatry and spawning season duration, Ecol. Modelling. 1997. Vol. 94. P. 157–175.
DeAngelis D. L., Grimm V. Individual-based models in ecology after four decades, F1000Prime Reports. 2014. P. 1–6. URL: https://archive.org/details/pubmed-PMC4047944/page/n5/mode/2up.
DeAngelis D. L., Gross L. J. Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems. N. Y.: CRC Press; Boston (MA): Springer US, 1992. 545 p.
DeAngelis D. L., Mooij W. M. Individual-based modelling of ecological and evolutionary processes. 1, Annu. Rev. Ecol. Evol. Syst. 2005. Vol. 36. P. 147–168.
Dombrovskiy Yu. A. Markman G. S. Spatial and temporal order in ecological and biochemical systems. Rostov n/D.: Izd-vo Rostov. gosun-ta, 1983. 118 p.
Economics of Russian cities and urban agglomerations. Issue. 4: new approaches to assessing the gross urban product and its structure. M.: Fond «Institut ekonomiki goroda», 2020. URL: http://www.urbaneconomics.ru/urbaneconomics.
Edmondson T. The practice of ecology. About Lake Washington and more. M.: Mir, 1998. 299 p.
Garifullin M., Borshchev A., Popkov T. Using Anylogic and Agent-Based Approach to Model Consumer Market. 2007. URL: http://www.xjtek.com/support/download/papers/.
Garmiza G. Social Life of Plants. M.: Moskovskiy rabochiy, 1927. 60 p.
Gause G. F. The Struggle for Existence. Baltimore: Williams & Wilkins So., 1934. 163 r.
Gilyarov A. M. Population Ecology: A Study Book. M.: Izd-vo MGU, 1990. 191 p.
Grabarnik P. Ya. Shanin V. N. Chertov O. G. Priputina I. V. Byhovec S. S. Petropavlovskiy B. S. Frolov P. V. Zubkova E. V. Shashkov M. P. Frolova G. G. Modeling the dynamics of forest ecosystems as a tool for forest forecasting and management, Lesovedenie. 2019. No. 6. P. 488–500.
Grimm V., Railsback S. Individual-Based Modeling and Ecology. Princeton (NJ): Princeton Univ. Press, 2005. 448 r.
Grimm V., Wyszomirski T., Aikman D., Uchmanki J. Individual-based modelling and ecological theory: synthesis of a workshop, Ecol. Modelling. 1999. Vol. 115. P. 275–282.
Hanski I. Metapopulation ecology. Oxford: Oxford Univ. Press, 1999. 313 p.
Hanski I. The shrinking world: ecological consequences of habitat loss. M.: Tov-vo nauch. izd. KMK, 2010. 340 p.
Hanski I., Gaggiotti O. Ecology, Genetics and Evolution of Metapopulations. London: Elsevier Acad. Press, 2004. 696 p.
Haythorne S., Skabar A. An improved pattern-guided evolution approach for the development of adaptive individual-based ecological models, Ecol. Modelling. 2013. Vol. 252. P. 72–82.
He H. S., Mladenoff D. J., Boeder J. An object-oriented forest landscape model and its representation of tree species, Ecol. Modelling. 1999. Vol. 119, No 1. P. 1–19.
Jackson J. B. C. Bivalves; spatial and size-frequency distributions of two intertidal species, Science. 1968. Vol. 161. P. 479–480.
James J. Methodological individualism in ecology, Philosophy of Sci. 2014. Vol. 81, No 5. P. 770–784.
Karpov Yu. G. Agent modeling is a new paradigm in simulation modeling. 2008. URL: https://masters.donntu.ru/2008/fvti/dovzhik/libary/st9.htm.
Karpov Yu. G. Simulation modeling of systems. Introduction to modeling with AnyLogic 5. SPb.: BHV-Peterburg, 2005. 400 p.
Kolobov A. N. Modeling the spatio-temporal dynamics of tree communities: an individually-oriented approach, Lesovedenie. 2014. No. 5. P. 72–82.
Kolobov A. N., Frisman E. Ya. Individual-based model of spatio-temporal dynamics of mixed forest stands, Ecol. Complexity. 2016. Vol. 27. P. 29–39.
Komarov A. S. Zubkova E. V. Frolov P. V. Cellular automaton model of the dynamics of populations and communities of dwarf shrubs, Sibirskiy lesnoy zhurn. 2015. No. 3. P. 57–69.
Komarov A. S. Simulation models of nonlinear dynamics of plant communities: Dip. ... d-ra biol. nauk. Puschino; Tol'yatti: IEVB RAN, 2004. 389 c.
Krestin S. V. Rozenberg G. S. On one mechanism of “water bloom” in a plain type reservoir, Biofizika. 1996. T. 41. Vyp. 3. P. 650–654.
Krestin S. V. Rozenberg G. S. Two-dimensional model of “water bloom” in a plain-type reservoir, Izvestiya Samarskogo NC RAN. 2002. T. 4, No. 2. P. 276–279.
Kulakov M. P. Frisman E. Ya. Clustering and chimeras in the model of spatio-temporal dynamics of populations with age structure, Nelineynaya dinamika. 2018. T. 14, No. 1. P. 13–31.
Kulakov M. P. Frisman E. Ya. Model of spatio-temporal population dynamics with age structure and long-range interactions: synchronization and clustering, Matematicheskaya biologiya i bioinformatika. 2019. T. 14. Vyp. 1. P. 1–18. URL: https://www.matbio.org/2019/Kulakov_14_1.pdf.
Kulakov M. P. Revuckaya O. L. Application of the metapopulation approach to the analysis of the spatio-temporal dynamics of game animals (on the example of wild boar and red deer populations), Regional'nye problemy. 2011. T. 14, No. 2. P. 12–20.
Large urban agglomerations of Russia, Sayt VSEON.com. 2015. URL: http://vseon.com/ analitika/aglomeratsiya/krupnye-gorodskie-aglomeracii-rossii.
Levins R. Some demographic and genetic consequences of environmental heterogeneity for biological control, Bull. Entomological Soc. America. 1969. Vol. 15, No 3. P. 237–240.
Lou A. M. Kel'ton V. D. Simulation modeling analysis. 3-e izd. SPb: Piter; Kiev: BHV, 2004. 847 p.
Lyubovnyy V. Ya. Samara-Tolyatti Agglomeration: history of formation and development prospects. M.: Ekon-Inform, 2011. 169 p.
Marchuk G. I. Methods of computational mathematics. M.: Nauka, 1989. 608 p.
Matejicek L., Vavrova E., Cudlin P. Spatio-temporal modelling of ground vegetation development in mountain spruce forests, Ecol. Modelling. 2011. Vol. 222, No 14. P. 2584–2592.
Menshutkin V. V. The art of modeling (Ecology, Physiology, Evolution). Petrozavodsk; SPb.: RAN, 2010. 416 p.
Mirkin B. M. Naumova L. G. The current state, trends in the development of the science of vegetation and a new understanding of the nature of the plant community, Uspehi sovremennoy biologii. 1994. T. 114. Vyp. 1. P. 5–21.
Mirkin B. M. Naumova L. G. The science of vegetation: (history and current state of the basic concepts). Ufa: Gilem, 1998. 413 p.
Mirkin B. M. Rozenberg G. S. Naumova L. G. Dictionary of concepts and terms of modern Phytocenology. M.: Nauka, 1989. 223 p.
Mirkin B. M. Rozenberg G. S. Analysis of the mosaic structure of herbaceous plant communities. 2. Cenotic level, Biologicheskie nauki. 1977. No. 2. P. 121–126.
Mirkin B. M. Rozenberg G. S. Phytocenology. Principles and methods. M.: Nauka, 1978. 212 p.
Mony C., Garbey M., Smaoui M., Benot M.L. Large scale parameter study of an individual-based model of clonal plant with volunteer computing, Ecol. Modelling. 2011. Vol. 222, No 4. P. 935–946.
Odum Yu. Ecology. M.: Mir, 1986. T. 1. 328 p.; T. 2. 376 p.
Pautova V. N. Nomokonova V. I. Phytoplankton productivity of the Kuibyshev reservoir. Tol'yatti: IEVB RAN, 1994. 188 p.
Phytoplankton of the Lower Volga. Reservoirs and lower reaches of the river. SPb.: Nauka, 2003. 232 p.
Poyya D. My familiar mathematicians, Nauka i zhizn'. 1970. No. 6. P. 48–51.
Practical agent-based modeling and its place in the analyst's arsenal, Exponenta PRO. 2004. No. 3-4 (7-8). P. 38–47.
Rabotnov T. A. Phytocenology. 2-e izd. M.: Izd-vo MGU, 1983. 296 p.
Rebaudo F., Le Rouzic A., Dupas S., Silvain J, F., Harry M., Dangles O. SimAdapt: an individual-based genetic model for simulating landscape management impacts on populations, Methods Ecol. Evol. 2013. V. 4. P. 595–600.
Reymers N. F. Nature management: Dictionary-reference Book. M.: Mysl', 1990. 637 p.
Riznichenko G. Yu. Rubin A. B. Biophysical dynamics of production processes. M.; Izhevsk: Institut komp'yuternyh tehnologiy, 2004. 464 p.
Romero-Mujalli D., Jeltsch F., Tiedemann R. Individual-based modeling of eco-evolutionary dynamics: state of the art and future directions, Reg. Environ. Change. 2019. V 19. P. 1–12.
Roughgarden J. Individual based models in ecology: An evaluation, or how not to ruin a good thing, Philosophy of Science Association Biennial Meeting, San Diego, 2012. Unpublished manuscript, PhilSci Archive. 2012. URL: http://philsci-archive.pitt.edu/9434/1/RoughgardenPSA2012IBMLecture.pdf, https://core.ac.uk/download/pdf/148349671.pdf.
Rozenberg G. S. Mozgovoy D. P. Gelashvili D. B. Elements of theoretical constructions of modern ecology (A study book). Samara: Samarskiy NC RAN, 1999. 396 p.
Rozenberg G. S. Introduction to theoretical ecology. Izd. 2-e, ispr. i dop. Tol'yatti: Kassandra, 2013. T. 1. 565 p.; T. 2. 445 p.
Rozenberg G. S. System approach in globalistics on the example of modern socio-ecological and economic systems, Vek globalizacii. 2022. No. 4 (44). C. 28–48.
Rozenberg G. S., Krestin S. V. System of analytical models of processes of eutrophication in the reservoir (block approach), Programme and Abstracts. 3rd International Conference on Reservoir Limnology and Water Quality. Ceske Budejovice (Czech Republic), 1997. R. 151.
Salmenkova E. A. Population systems, metapopulations, biocomplexity, Uspehi sovremennoy biologii. 2018. T. 138, No. 1. P. 3–11.
Schieritz N., Milling P. Modeling the forest or modeling the trees – a comparison of system dynamics and agent-based simulation, The 21st International Conference of the System Dynamics Society. N. Y.: System Dynamics Society, 2003. 15 p. URL: http://iswww.bwl.uni-mannheim.de/Forschung/pr/sd03/p-na.pdf.
Seidl R., Rammer W., Scheller R. M., Spies T. A. An individual-based process model to simulate landscape-scale forest ecosystem dynamics, Ecol. Modelling. 2012. Vol. 231. P. 87–100.
Shein E. V. Ryzhova I. M. Mathematical modeling in soil science. Textbook. M.: IP Marakushev A. B., 2016. 377 p.
Shennon R. Systems Simulation – the Art and Science. M.: Mir, 1978. 420 p.
Shitikov V. K. Rozenberg G. S. Zinchenko T. D. Quantitative hydroecology: methods, criteria, solutions. M.: Nauka, 2005. Kn. 1. 281 p.; Kn. 2. 337 p.
Shuman J. K., Shugart H. H., Krankina O. N. Testing individual-based models of forest dynamics: Issues and an example from the boreal forests of Russia, Ecol. Modelling. 2014. Vol. 293. P. 102–110.
Shvarc S. S. Ecological mechanisms of the evolutionary process, Vestnik AN SSSR. 1968. No. 5. P. 57–66.
Shvarc S. S. Evolutionary Ecology of Animals. Sverdlovsk: RISO UFAN SSSR, 1969. 200 p.
Shvarc S. S. Evolutionary ecology of animals and its tasks, Zhurnal obschey biologii. 1965. T. 26, No. 5. P. 528–537.
Shvarc S. S. Evolutionary ecology, Sovremennye problemy ekologii. (Doklady). M.: Izd-vo MGU, 1973. P. 52–62.
Shvarc S. S. Intraspecific variability of mammals and methods of its study, Zoologicheskiy zhurnal. 1963. T. 4. Vyp. 3. P. 417–433.
Shvarc S. S. Population structure of the species, Zoologicheskiy zhurnal. 1967. T. 46. Vyp. 10. P. 1456–1469.
Stephens P. A., Sutherland W. J., Freckleton R. P. What is the Allee effect?, Oikos. 1999. Vol. 87, No 1. P. 185–190.
Stillman R. A., Goss-Custard J. D. Individual-based ecology of coastal birds, Biol. Reviews. 2010. Vol. 85. P. 413–434.
Stillman R. A., Railsback S. F., Giske J., Berger U., Grimm V. Making predictions in a changing world: the benefits of individual-based ecology. Bioscience. 2015. Vol. 65. P. 140–150.
Svirezhev Yu. M. Nonlinear waves, dissipative structures and catastrophes in ecology. M.: Nauka, 1987. 368 p.
Terna P. Agent based artificial experiments in social science with jESOF, J. Social Complexity. 2007. Vol. 3. P. 75–84.
The use of simulation modeling in Russia – state for 2007, 3-ya Vserossiyskaya nauchno-prakticheskaya konferenciya po imitacionnomu modelirovaniyu IMMOD 2007; Sankt-Peterburg, 17–19 oktyabrya 2007 g. SPb.: FGUP CNII tehnologii sudostroeniya, 2007. P. 11–16.
Timofeeff-Ressovsky N. W. Mutations and geographical variations, The New Systematics (Ed. Huxley J.). Oxford: Clarendon Press, 1940. P. 73–136.
Timohina A. F. Zooplankton as a component of the ecosystem of the Kuibyshev reservoir. Tol'yatti: IEVB RAN, 2000. 193 p.
Titov K. A. Lyubovnyy V. Ya. Hasaev G. R. Samara-Togliatti Agglomeration: current state and ways of sustainable development. M.: Nauka, 1996. 208 p.
Vol'terra V. Mathematical theory of the struggle for existence. M.: Nauka, 1976. 288 p.
World dynamics. M.: Nauka, 1978. 168 p.
Zharikov V. V. The concept of the natural-technical cascade complex of ecosystems of Volga reservoirs, Ekologicheskie problemy basseynov krupnyh rek: Tezisy dokladov Mezhdunarodnoy konferencii. Tol'yatti: IEVB RAN, 1998. P. 15–17.
Zhukova L. A. Komarov A. S. Polyvariance of ontogeny and dynamics of plant coenopopulations, Zhurnal obschey biologii. 1990. T. 51, No. 4. P. 450–461.
Zhukova L. A. Komarov A. S. Quantitative analysis of dynamic polyvariance in coenopopulations of the greater plantain at different planting densities, Nauchnye doklady vysshey shkoly. Biol. nauki. 1991. No. 8. P. 51–67.