Bodnar I., Cheban E. Phytotoxicity of cesium for duckweed Lemna minor L. // Principy èkologii. 2022. № 2. P. 24‒36. DOI: 10.15393/

Issue № 2

Original research


Phytotoxicity of cesium for duckweed Lemna minor L.

   Irina Sergeevna
PhD, Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences,
   Evgenia Vasiljevna
Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences,
Lemna minor L.
stable cesium
Summary: Radiocesium contamination of surface water bodies is one of the most dangerous for biota and humans. The duality of the toxic effects of radionuclides on living organisms is expressed in the combined effect of radiation and a chemical agent in the form of heavy metal ions. The study of the reaction of plants to stable cesium is important for revealing the mechanisms of action of radioactive isotopes, as well as the search for effective phytoremediators of contaminated areas of water bodies. In this work, we studied the phytotoxicity of cesium for a free-floating freshwater plant, duckweed (Lemna minor L.). The laboratory culture was grown on a Steinberg's medium with the addition of 0.17; 0.51; 0.85; 1.19; 1.36; 1.53; 2.55; 3.4 mmol/l cesium. Seven days after the start of the experiment, the specific growth rate, the number of plants with chlorosis and necrosis, and the average surface area of the frond were calculated. Biochemical parameters (sum of chlorophylls (a + b), carotenoids, malondialdehyde) were determined four days after the start of the experiment. Stable cesium in naturally occurring concentrations is non-toxic to duckweed. Cesium in millimolar concentrations had an inhibitory effect on the specific growth rate, led to a reduction in the average area of the fronds, the appearance of plants with chlorosis and necrosis. High concentrations of cesium had pro-oxidant properties, increasing lipid peroxidation of membranes, which was confirmed by an increase in the content of malondialdehyde. Exposure to cesium led to a decrease in the concentration of chlorophylls (a + b) and carotenoids to 20 % of the level of control plants. The results of the study confirmed the possibility of using Lemna minor for phytoremediation of radiocesium contaminated water bodies.

© Petrozavodsk State University

Reviewer: N. M. Kalinkina
Received on: 04 March 2022
Published on: 10 July 2022


Avery S. V. Caesium accumulation by microorganisms: uptake mechanisms, cation compartmentalization and toxicity, Journal of Industrial Microbiology. 1995. Vol. 14. P. 76–84. DOI: 10.1007/BF01569888.

Bodnar' I. S. Cheban E. V. The effect of 24-epibrassinolide on growth rates, level of oxidative stress and photosynthetic pigments in little duckwood (Lemna minor L.) after exposure to heavy metals, Principy ekologii. 2020. No. 1. P. 27–42. DOI: 10.15393/

Bodnar' I. S. Yushkova E. A. Zaynullin V. G. Effect of γ-radiation on morphometric characteristics of duckweed (Lemna minor L.), Radiacionnaya biologiya. Radioekologiya. 2016. T. 56, No. 6. P. 617–622. DOI: 10.7868/S0869803116060035.

Burger A., Lichtscheidl I. Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants’ potential for bioremediation, Science of The Total Environment. 2018. Vol. 618. P. 1459–1485. DOI: 10.1016/j.scitotenv.2017.09.298.

Carini F., Lombi E. Foliar and soil uptake of 134Cs and 85Sr by grape vines, Science of the Total Environment. 1997. Vol. 207. P. 157–164. DOI: 10.1016/s0048-9697(97)00261-1.

Fregoni M. Viticoltura Generale. Roma: REDA, 1985. pp. 172-239.

Gaillardet J., Viers J., Dupré B. Trace elements in river waters, Treatise on Geochemistry, Eds. D. H. Heinrich, K. T. Karl. Amsterdam: Elsevier-Pergamon, 2003. P. 225–272. DOI: 10.1016/B0-08-043751-6/05165-3.

Genies L., Martin L., Kanno S., Chiarenza S., Carasco L., Camilleri V., Vavasseur A., Henner P., Leonhardt N. Disruption of AtHAK/KT/KUP9 enhances plant cesium accumulation under low potassium supply, Physiol Plant. 2021. Vol. 173 (3). P. 1230–1243. DOI: 10.1111/ppl.13518.

Greenwood N. N., Earnshaw A. Chemistry of the Elements (2nd Ed.). Pergamon Press, 1997. 1341 p.

Hampton R. R., Hampstead B. M., Murray E. A. Selective hippocampal damage in rhesus monkeys impairs spatial memory in an open-field test, Hippocampus. 2004. Vol. 14 (7). P. 808–818. DOI: 10.1104/pp.104.046672.

Heath R. L., Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Archives in Biochemistry and Biophysics. 1968. Vol. 125. P. 189–198.

Ihara H., Kumagai A., Hori T., Nanba K., Aoyagi T., Takasaki M., Katayama Y. Direct comparison of bacterial communities in soils contaminated with different levels of radioactive cesium from the first Fukushima nuclear power plant accident, Science of the Total Environment. 2021. P. 1–8. DOI: 10.1016/j.scitotenv.2020.143844.

Imanaka T., Hayashi G., Endo S. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1, Journal of Radiation Research. 2015. Vol. 56, No S1. P. 56–61. DOI: 10.1093/jrr/rrv074.

Kamel H., Eskander S., Aly M. Physiological response of Epipermnum aureum for cobalt-60 and casium-137 translocation and rhizofiltration, Int. J. Phytorem. 2007. Vol. 9. P. 403–417. DOI: 10.1080/15226510701606281.

Konoplev A. V., Golosov V. N., Yoschenko V. I., Nanba K., Onda Y., Takase T., Wakiyama Y. Vertical distribution of radiocesium in soils of the area affected by the Fukushima Dai-ichi nuclear power plant accident, Eurasian Soil Sci. 2016. Vol. 49. P. 570–580. DOI: 10.1134/S1064229316050082.

Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods in Enzymology. 1987. No. 148. P. 350–382. DOI: 10.1016/0076-6879(87)48036-1.

Madoz-Escande C., Henner P., Bonhomme T. Foliar contamination of Phaseolus vulgaris with aerosols of 137Cs, 85Sr, 133Ba and 123mTe: influence of plant development stage upon contamination and rain, J. Environmental Radioactivity. 2004. Vol. 73. P. 49–71. DOI: 10.1016/j.jenvrad.2003.08.001.

Mathurin F. A., Aström M. E., Drake H., Maskenskaya O. M., Kalinowski B. E. REE and Y in groundwater in the upper 1.2 km of Proterozoic granitoids (Eastern Sweden) – Assessing the role of composition and origin of groundwaters, geochemistry of fractures, and organic/inorganic aqueous complexation, Geochim. Cosmochim Acta. 2014. Vol. 144. P. 342–378. DOI: 10.1016/j.gca.2014.02.001.

Mikami S., Maeyama T., Hoshide Y., Sakamoto R., Sato S., Okuda N. Spatial distributions of radionuclides deposited onto ground soil around the Fukushima Daiichi nuclear power plant and their temporal change until December 2012, Journal of Environmental Radioactivity. 2015. Vol. 139. P. 320–343. DOI: 10.1016/j.jenvrad.2014.09.010.

Molecular-genetic and biochemical methods in modern plant biology, Pod red. Vl. V. Kuznecova, V. V. Kuznecova, G. A. Romanova. M.: Binom. Lab. znaniy, 2012. 487 p.

OECD Guidelines for the testing chemicals. Lemna sp. Growth Inhibition Test. Organisation for Economic Co-operation and Development. Paris, 2006. 22p.

Osipov D. I. Duhovnaya N. I. Tryapicyna G. A. Deryabina L. V. Pryahin E. A. Planktonic communities of lake Karachay, Voprosy radiacionnoy bezopasnosti. 2011. No. 5. P. 50–59.

Pinder III J., Hinton T., Whicker F. Foliar uptake of cesium fro the water column by aquatic macrophytes, J. Environ. Radioact. 2006. Vol. 85. P. 23–47. DOI: 10.1016/j.jenvrad.2005.05.005.

Platonova E. V. Kartashov A. V. Belyaev D. V. Karpychev I. V. Hyperaccumulation of cesium by duckweed Lemna minor, Izvestiya Samarskogo NC RAN. 2019. T. 21, No. 2. P. 51–59.

Pryahin E. A. Deryabina L. V. Gavrilova E. V. Tryapicyna G. A. Akleev A. V. Some characteristics of the biota state in the R-17 reservoir. Pilot studies, Voprosy radiacionnoy bezopasnosti. 2009. No. 5. P. 86–91.

Radiation safety standards. M.: Minzdrav Rossii, 1999. 115 p.

Söderlund M., Lusa M., Lehto J., Hakanen M., Lahdenperä, A. Sorption of iodine, chlorine, technetium and cesium in soil. Posiva Working Report. 2011. 04. 130 p.

Saito K., Tanihata I., Fujiwara M., Saito T., Shimoura S., Otsuka T., et al. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi nuclear power plant accident, Journal of Environmental Radioactivity. 2015. Vol. 139. P. 308–319. DOI: 10.1016/j.jenvrad.2014.02.014.

Sapozhnikov Yu. A. Aliev R. A. Kalmykov S. N. Radioactivity of the environment. M.: Binom. Lab. znaniy, 2006. 286 p.

Steinberg R. Mineral requirement of Lemna minor L., Plant Physiol. 1946. Vol. 21. P. 42–48. DOI: 10.1104/pp.21.1.42.

Teerstra D. K., Cerny P., Chapman R. Compositional heterogeneity of pollucite from High Grade Dyke, Maskwa Lake, southeastern Manitoba, Canadian Mineralogist. 1992. Vol. 30. P. 687–697.

Twenty-five years after Chornobyl accident: safety for the future. National report of Ukraine. Kyiv: KIM, 2011. 328 p.

Vakulovskiy S. M. Gaziev Ya. I. Kolesnikova L. V. Petrenko G. I. Tertyshnik E. G. Uvarov A. D. 137Cs and 90Sr in surface water bodies in Bryansk oblast in 1987–2002, Atomnaya energiya. 2006. T. 100, No. 1. P. 68–74.

Vasilenko I. Ya. Radioactive cesium-137, Priroda. 1999. No. 3. P. 70–76.

White P. J., Broadley M. R. Mechanisms of caesium uptake by plants, New Phytol. 2000. Vol. 147. P. 241–256.

Yan D., Zhao Y., Lu A., Wang S., Xu D., Zhang P. Effects of accompying anions on cesium retention and translocation via droplets on soybean leaves, J. Environmental Radioactivity. 2013. Vol. 126. P. 232–238. DOI: 10.1016/j.jenvrad.2013.08.009.

Zhang Y., Liu G. Effects of cesium accumulation on chlorophyll content and fluorescence of Brassica juncea L., Journal of Environmental Radioactivity. 2018. Vol. 195. P. 26–32. DOI: 10.1016/j.jenvrad.2018.09.017.

Displays: 1318; Downloads: 683;