Korobova L., Riksen V. Grassing as an ecological factor of transformation of the solonetz and its microflora // Principy èkologii. 2022. № 2. P. 58‒67. DOI: 10.15393/j1.art.2022.12483


Issue № 2

Original research

pdf-version

Grassing as an ecological factor of transformation of the solonetz and its microflora

Korobova
   Larisa Nikolaevna
D.Sc., Federal State Budgetary Educational Institution of Higher Education Novosibirsk State Agrarian University, lnkorobova@mail.ru
Riksen
   Vera Sergeevna
Federal State Budgetary Educational Institution of Higher Education Novosibirsk State Agrarian University, Riclog@mail.ru
Keywords:
small solonetz
phytomelioration
grassing
soil microorganisms
16S rRNA
Summary: One of the global environmental problems is soil salinization, including secondary one, covering about 950 million hectares in terrestrial ecosystems. In Western Siberia, about 40 % of the territory is represented by solonetzic soils and their full use is associated with gypsuming (which is expensive) or long-term reclamation with grasses. Herbs-phytomeliorants are not only many times more productive than natural meadows, but also have a desalinating effect. To increase the yield of fodder crops on solonetzic lands, specialists of the Siberian Research Institute of Feed in the 80s of the last century developed phytomeliorative crop rotations. The article examines the effect of grassing of forage crop rotations with a mixture of brome (Bromus inermis Leyss.) and alfalfa (Medicago varia Mart.) for thirteen years on the microflora of meadow (hydromorphic) solonetzes (Gleyic Solonetz Albic.). Grassing after forage crop rotation led to an improvement in the water-air regime of solonetzic soils, as well as to a significant desalinization of the upper soil horizon and a decrease in its alkalinity. Long-term cultivation of fodder crop rotations and subsequent grassing formed a specific soil microbiocenosis, characterized by a taxonomic diversity of microorganisms and a greater proportion of copiotrophs in the dominant phyla, which indirectly indicates an increase in the carbon content and nitrogen available to plants in the phytomeliorated solonetz.

© Petrozavodsk State University

Received on: 23 February 2022
Published on: 10 July 2022

References

Berg G., Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere, FEMS Microbiol. Ecol. 2009. Vol. 68. P. 1–13. DOI: 10.1111/j.1574-6941.2009.00654.x.

Bhattacharyya A., Pablo C. H. D., Mavrodi O. V., Weller D. M., Thomashow L. S., Mavrodi D. V. Rhizosphere plant-microbe interactions under water stress, Eds.: G. M. Gadd, S. Sariaslani, Advances in Applied Microbiology. 2021. Vol. 115. P. 65–113. DOI: 10.1016/bs.aambs.2021.03.001.

Bulgarelli D., Garrido-Oter R., Munch P. C., Weiman A., Dröge J., Pan Y., McHardy A. C., Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley, Cell Host Microbe. 2015. Vol. 17. P. 392‒403. DOI: 10.1016/j.chom.2015.01.011.

Coleman-Derr D., Desgarennes D., Fonseca-Garcia C., Gross S., Clingenpeel S., Woyke T., North G., Visel A., Partida-Martinez L. P., Tringe S. G. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species, New Phytol. 2016. Vol. 209. P. 798‒811. DOI: 10.1111/nph.13697.

De Bruyn J., Nixon L., Fawaz M., Johnson M., Radosevich M. Global Biogeography and Quantitative Season Dynamics of Gemmatimonadetes in Soil, Appl Environ. Microbiol. 2011. Vol. 77 (17). P. 6295–6300. DOI: 10.1128/AEM.05005-11.

Edgar R. C. SINTAX, a Simple Non-Bayesian Taxonomy Classifier for 16S and ITS Sequences, bioRxiv preprint. 2016. Vol. 9. P. 074161. DOI: 10.1101/074161.

Elizarov N. V. Lomova T. G. Ustinov M. T. Popov V. V. Effect of agrobiological melioration on the salt profile of solonetzes of Eastern Baraba, Vestnik Novosibirskogo gosudarstvennogo agrarnogo universiteta. 2019. No. 1. P. 18–25. DOI: 10.26898/0370-8799-2018-6-2.

Fierer N., Leff J. W., Adams B. J., Nielsen U. N., Bates S. T., Lauber C. L., Owense S., Gilberte J. A., Wall D. H., Caporaso J. G. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes, Proceedings of the National Academy of Sciences. 2012. Vol. 109 (52). P. 21390–21395. DOI: 10.1073/pnas.1215210110.

Gao W., Xu J., Zhao J., Zhang H., Ni Y., Zhao B., Jia Z. Prokaryotic community assembly after 40 years of soda solonetz restoration by natural grassland and reclaimed farmland, European Journal of Soil Biology. 2020. Vol. 100. R. 103213.

Girvan M. S., Bullimore J., Pretty J. N., Osborn A. M., Ball A. S. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils, Appl. Environ. Microbiol. 2003. Vol. 69. P. 1800–1809. DOI: 10.1111/1462-2920.12452.

Gottel N. R., Castro H. F., Kerley M., Yang Z., Pelletier D. A., Podar M., Karpinets T., Uberbacher E., Tuskan G. A., Vilgalys R., Doktycz M. J., Schadt C. W. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types, Appl. Environ. Microbiol. 2011. Vol. 77. P. 5934‒5944. DOI: 10.1128/AEM.05255-11.

Handelsman J. Metagenomics: application of genomics to uncultured microorganisms, Microbiology and molecular biology reviews. 2004. Vol. 68 (4). P. 669‒685. DOI: 10.1128/MMBR.68.4.669-685.2004.

Jones R. T., Robeson M. S., Lauber C. L., Hamady M., Knight R., Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses, ISME J. 2009. Vol. 3 (4). P. 442–453. DOI: 10.1038/ismej.2008.127.

Knief C., Delmotte N., Chaffron S., Stark M., Innerebner G., Wassmann R., von Mering C., Vorholt J. A. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice, ISME J. 2012. Vol. 6. P. 1378‒1390. DOI: 10.1038/ismej.2011.192.

Konstantinov M. D. Kucherenko A. M. Timing and methods of grassing of Baraba solonetzes, Kormoproizvodstvo. 2000. No. 4. P. 13–15.

Korobova L. N. Influence of phytomeliorative crop rotations on the microflora of small and medium solonetz of Baraba, Materialy nauchno-proizvodstvennoy konferencii s mezhdunarodnym uchastiem. Tyumen': Gop. agrarnyy un-t Severnogo Zaural'ya, 2018. P. 425–431.

Krishna M., Gupta S., Delgado-Baquerizo M., Morriën E., Garkoti S. C. et al. Successional trajectory of bacterial communities in soil are shaped by plant-driven changes during secondary succession, Scientific reports. 2020. Vol. 10. R. 1–10. DOI: 10.1038/s41598-020-66638-x.

Lin Y. T., Lin Y. F., Tsai I. J. Structure and Diversity of Soil Bacterial Communities in Offshore Islands, Scientific reports. 2019. Vol. 9 (1). P. 4689. DOI: 10.1038/s41598-019-41170-9.

Lomova T. G. Korobova L. N. Phytomeliorative cultivation of solonetzes of Baraba and its influence on the biological activity of the soil, Sibirskiy vestnik sel'skohozyaystvennoy nauki. 2015. No. 1. P. 12–18.

Makhalanyane T. P., Valverde A., Gunnigle E., Frossard A., Ramond J, B., Cowan D. A. Microbial ecology of hot desert edaphic systems, FEMS Microbiol Rev. 2015. Vol. 39 (2). P. 203–221. DOI: 10.1093/femsre/fuu011.

Mendes L. W., Kuramae E. E., Navarrete A. A., van Veen J. A., Tsai S. M. Taxonomical and functional microbial community selection in soybean rhizosphere, ISME J. 2014. Vol. 8. P. 1577‒1587. DOI: 10.1038/ismej.2014.17.

Muha V. D. On indicators reflecting the intensity and direction of soil processes, Sbornik trudov Har'kovskogo sel'skohozyaystvennogo instituta. 1980. T. 273. P. 13–16.

Riksen V. S. Korobova L. N. Lomova T. G. Changes in the microbiome of small solonetz under the influence of long-term cultivation of sweet clover, Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya: Estestvennye i tehnicheskie nauki. 2021b. No. 10. P. 54–58. DOI: 10.37882/2223-2966.2021.10.20.

Riksen V. S. Korobova L. N. Biodiversity of bacteria of the small solonetz after 30 years of phytomelioration with sweet clover, Aktual'nye voprosy agropromyshlennogo kompleksa Rossii i za rubezhom: Materialy vserop. (nac.) nauch, prakt. konf. s mezhdunar. uchastiem. Molodezhnyy: Irkutskiy GAU im. A. A. Ezhevskogo, 2021a. P. 129–134.

Semendyaeva N. V. Properties of solonetzes of Western Siberia and the theoretical foundations of chemical reclamation, Pod red. A. N. Vlasenko. Novosibirsk: GUP RPO SO RASHN, 2002. 157 p.

Semendyaeva N. V., Korobova L. N., Elizarov N. V. Changes in the Properties and Biological Activity of Crusty Solonetzes in the Baraba Lowland under the Long-Term Impact of Gypsum, Eurasian Soil Science. 2014. Vol. 11. P. 1116‒1122. DOI: 10.1134/S1064229314110118.

Suyundukov Ya. T. Hasanova R. F. Suyundukova M. B. Phytomeliorative effectiveness of perennial grasses on the chernozems of the Trans-Urals, Pod red. chl, korr. AN RB, prof. F. H. Hazieva. Ufa: Gilem, 2007. 132 p.

Vagina T. A. Meadows of Baraba. Novosibirsk, 1962. Ch. 1. 198 p.

World reference base for soil resources 2006. IUSS Working Group. World Soil Resources Reports. No 103. Rome, 2006. 145 p.

Displays: 1303; Downloads: 690;