Kuznetsova N., Klushevskaya E. Mechanisms of survival of Pinus sylvestris L. in drought in anthropogenically polluted territory // Principy èkologii. 2022. № 2. P. 68‒77. DOI: 10.15393/j1.art.2022.11874


Issue № 2

Original research

pdf-version

Mechanisms of survival of Pinus sylvestris L. in drought in anthropogenically polluted territory

Kuznetsova
   Nina Fedorovna
PhD, All-Russian Research Institute of Forest Genetics, Breeding and Biotechnology, 394087, Voronezh, Lomonosov st., 105, nfsenyuk@mail.ru
Klushevskaya
   Elena Sergeevna
All-Russian Research Institute of Forest Genetics, Breeding and Biotechnology, 394087, Voronezh, Lomonosov st., 10, ekogenlab@gmail.com
Keywords:
Scots pine
reaction norm
seed productivity
physiological traits
anthropogenic stress
drought
Summary: The aim of the research is to study the reaction norm of morphological, physiological and biochemical characteristics of Scots pine (Pinus sylvestris L.) in optimal years and survival mechanisms of natural and urbanized ecosystems in moderate and severe drought ex situ and ex vivo. The objects of research are forest plantations of Scots pine near the reserve (Voronezh region, control) and a forest strip along the highway “Don” (Voronezh, experimental facility). In the research, we carried out the study of the reaction norm of seed productivity traits (seed fullness, number of seeds per cone), water regime (moisture deficiency, total amount of moisture, colloid-bound water content) and proline content in field and laboratory experiments ex situ and ex vivo on the scale of "optimal years – moderate – severe drought". As a result, significant differences between populations in response to drought of different intensity were established. It was shown that moderate hydrothermal stress expands the reaction norm of the analyzed traits in the control population: the maximum range of variability is observed in moderate drought; the minimum – in optimal years and severe drought ex situ and ex vivo. A single algorithm for variability of the generative and vegetative spheres of trees indicates that the control population is in a state of equilibrium, having a wide range of opportunities for adaptation in a moderate drought. The experimental object develops in the mode of a slightly non-equilibrium system: the maximum variability of traits is observed in optimal years and severe drought, and low, on the contrary, with moderate stress. The mechanisms of pine survival in drought in an anthropogenically polluted territory are discussed. According to the data obtained, the vegetative and generative spheres of trees of the experimental population respond differently to the increased hydrothermal load: the adaptive mechanisms of the vegetative sphere are aimed at maintaining homeostasis, and a more stable internal environment protects the genetic material of forming seeds from destruction.

© Petrozavodsk State University

Received on: 01 June 2021
Published on: 10 July 2022

References

Alaquori H. A. A., Ozer Genc C., Aricak B., Kuzmina N., Cetin M. The possibility of using Scots pine (Pinus sylvestris L.) as biomonitor in the determination of heavy metal accumulation, Applied Ecology and Environmental Research. 2020. No. 2 (29). P. 3713–3727. DOI: 10.15666/aeer/1802_37133727.

Allen C. D., Macalady A. K., Chenchouni H., et al. A global overview of drought and heat induced tree mortality reveals emerging climate change risks for forests, Forest Ecology and Management. 2010. Vol. 259, Iss. 4. P. 660–684. DOI: 10.1016/j.foreco.2009.09.001.

Bak P. Complexity and criticality, How nature works: the science of self-organized criticality. New York, 1996. P. 1–32.

Bates L. S., Waldren R. P., Teare I. D. Rapid determination of free proline for water stress studies, Plant Soil. 1973. Vol. 39, No. 1. P. 205–207. DOI: 10.1007/BF00018060.

Bezel' V. S. Bol'shakov V. N. Vorobeychik E. L. Population ecotoxycology. M.: Nauka, 1994. 80 p.

Brandt L., Levis A. D., Fahey R., Scott L., Darling L., Swanston C. A framework for adapting urban forests to climate change, Environment Science and Policy. 2016. Vol. 66. P. 393–402. DOI: 10.1016/j.envsci.2016.06.005.

Chirkova T. V. Physiological basics of plant resistance. SPb.: SPbGU, 2002. 244 p.

Chudinova L. A. Orlova N. V. Physiology of plant resistance. Perm': Perm. un-t, 2006. 124 p.

Demenko V. I. Shestibratov K. A. Lebedev V. G. The rooting is a key stage of in vitro plant reproduction, Izvestiya TSHA. 2010. No. 1. P. 73–85.

Forest ecosystems and atmospheric pollution, Pod red. A. K. Alekseeva. L.: Nauka, 1990. 200 p.

Grey G. W., Deneke F. J. Urban Forestry. 2nd Ed. New York: John Wiley and Sons, 1986. 299 p.

Johnstone J. F., Allen G. D., Franklin J. F., Frelich L. E., Harvey B. J., Higuera P. E., Mack M. C., Meentemeryer R. K., Metz M. R., Perry G. L. M., Schoennagel T., Turner M. G. Changing disturbance regimes, ecological memory, and forest resilience, Frontiers in Ecology and the Environmental. 2016. Vol. 14, Iss. 7. P. 369–378. DOI: 10.1002/fee.1311.

Klushevskaya E. S. Kuznecova N. F. The Scots pine drought tolerance assessment based on needle physiological indices, Lesovedenie. 2016. No. 3. C. 216–222.

Kurolap S. A. Nesterov Yu. A. Eprincev S. A. Classification of the Voronezh region in terms of anthropogenic impact on the environment, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geografiya. Geoekologiya. 2010. No. 1. P. 5–11.

Kuznecova N. F. Klushevskaya E. S. Changing the vital state of Pinus sylvestris L. as a way of surval in a technogenically polluted territory, Principy ekologii. 2020. No. 2. P. 40–47. DOI: 10.15393/j1.art.2020.10322.

Kuznecova N. F. Drought in the forest-steppe zone of the Central Chernozemic region and criteria for evaluation of their intensity, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Nauki o Zemle. 2019. T. 19, vyp. 3. P. 142–148. DOI: 10.18500/1819-7663-2019-19-3-142-148.

Kuznetsova N. F., Semenov M. A., Sautkina M. Yu. Pine forests of East European plain: distribution trends, functions and development problems, Pinus: growth, distribution and uses. New York: Nova Science Publ., 2019. P. 1–47.

Micieta K., Murin G. Three species of genus Pinus suitable as bioindicators of polluted environment, Water, Air & Soil Pollution. 1998. No. 104. P. 413–422. DOI: 10.1023/A:1004984121831.

Mikhailova T. A. The physiological condition of pine trees in the Prebaikalia (East Siberia), Forest Pathology. 2000. Vol. 30. P. 345–359. DOI: 10.1046/j.1439-0329.2000.00221.x.

Pochinok H. N. Methods of biochemical analysis of plants. Kiev: Naukova dumka, 1976. 334 p.

Popek R., Przybysz A., Gawrońska H., Klamkowski K., Gawroński S. W. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions, Ecotoxicol. Environ. Safety. 2018. No. 163. R. 56–62. DOI: 10.1016/j.ecoenv.2018.07.051.

Pridacha B. V. Sazonova T. A. Talanova T. Yu. Ol'chev A. V. Morphophysiological responses of Pinus sylvestris L. and Picea obovata Ledeb. under technogenic impact in the conditions of the north-west of Russia, Ekologiya. 2011. No. 1. P. 25–33.

Reyer Ch., Brouwers N., Ramming A., Brook B. W., et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges, J. Ecology. 2015. Vol. 103, No. 1. P. 5–15. DOI: 10.1111/1365-2745.12337.

Richardson D. M., Rundel P. W., Jackson S. T., Teskey R. O., Aronson J., Bytnerowicz A., Wingfield M. J., Proches S. Human impacts in pine forests: past, present and future, Ann. Rev. Ecology, Evolution and Systematics. 2007. Vol. 38. No. 1. P. 275–297. DOI: 10.1146/annurev.ecolsys.38.091206.095650.

Sakugawa H., Cape J. N. Harmful effects of atmospheric nitrous acid on the physiological status of Scots pine trees, Environ. Pollution. 2007. No. 3 (147). P. 532–534. DOI: 10.1016/j.envpol.2007.02.012.

Schou E., Thorsen B. J., Jacobsen J. B. Regeneration decision in forestry under climate change related uncertainties and risks: effects of three different aspects of uncertainty, Forest Policy and Economics. 2015. Vol. 50. P. 11–19. DOI: 10.1016/j.forpol.2014.09.006.

Suhodolec V. V. The nature of adaptive evolutionary changes: fitness and ecological potential, Genetika. 1998. T. 34, No. 12. P. 1589–1596.

Tavoni M., Sohngen B., Bosetti V. Forestry and the carbon market response to stabilize climate, Energy policy. Elsevier. 2007. Vol. 35, No. 11. P. 5346–5353. DOI: 10.1016/j.enpol.2006.01.036.

Vacchiano G., Garbarino M., Borgogno Mondino E., Motta R. Evidences of drought stress as a predisposing factor to Scots pine decline in Valle d’Aosta (Italy), European Journal of Forest Research. 2012. No. 131. P. 989–1000. DOI: 10.1007/s10342-011-0570-9.

Yordanov I., Velikova V., Tsonev T. Plant responses to drought, accumulation, and stress tolerance, Photosynthetica. 2000. Vol. 38, Iss. 2. P. 171–186. DOI: 10.1023/A:1007201411474.

Displays: 1328; Downloads: 729;