Issue № 1 |
Original research |
pdf-version |
Selivanova Marina | PhD, Institute of Systematics and Ecology of Animals, Frunze Str. 11, Novosibirsk, Russia, 630091, mykhantyev@ngs.ru |
Mikhantyev Anatoly | PhD, Institute of Systematics and Ecology of Animals, Frunze Str. 11, Novosibirsk, Russia, 630091, mykhantyev@ngs.ru |
Keywords: nesting timing climate change mallard Western Siberia |
Summary: In recent decades, the climate is warming, which causes a significant change in the time of seasonal phenomena of the annual life cycle of birds, including reproduction. Information on waterfowl is sparse and contradictory. There is no such data for the Western Siberia region. The purpose of this research is to summarize the materials of half a century of observations and to give a conclusion about the influence of climatic warming on the reproductive period of mallards in Western Siberia. The research was carried out on Lake Krotovaya Lyaga (53°43' N, 77°53' E) in the North Kulunda steppe from 1970 to 2018 (with the exception of 1976, 1977, 2008, and 2012–2014). Mallard nests were counted from the beginning of May to the end of July. The total length of the nest-initiation period was 75 days (April 14 – June 27). The date of laying the first egg in 1879 mallard nests is determined by standard calculations (Mednis, 1968). To assess the weather conditions, the data of the nearest weather station (Karasuk) and the North Atlantic Oscillation Indices (NAO), which are available in the public domain, were used. Statistical parametric and non-parametric analyses of the results were carried out using the programs PAST_3.17 and Excel 2010. For the period 1970-2018, the shift of the date of transition of the average daily air temperature through 0 °C to earlier dates was not detected. However, over a shorter period (1979–2018) this indicator had a significant trend with a shift of 2.5 ± 0.8 days for every 10 years (Z = 2.7; p = 0.007). Against this background, the start date of the first clutch, the average date of the egg-laying period (up 30 days), and the start date of the last clutch do not have this trend. The listed dates varied widely in different years. A highly reliable positive relationship of breeding dates with the date of transition of average daily air temperatures through 0 °C and a negative one with the February NAO index was established. The combined effect of these factors (local weather and a large-scale climate index) accounted for 25 % of the variability of the nesting start date and the average annual date of the egg-laying period. The time interval between the date of establishment of positive air temperatures and the beginning of breeding increased in the years with an early, warm spring and decreased in the cold years. © Petrozavodsk State University |
Received on: 16 November 2020 Published on: 18 March 2021 |
Alisauskas R. T., Ankney C. D. The cost of egg laying and its relationship to nutrient reserves in waterfowl, Ecology and Management of Breeding Waterfowl, B. D. J. Batt, A. D. Afton, M. G. Anderson, C. D. Ankney, D. H. Johnson, J. A. Kadlec, G. L. Krapu (eds.). Minneapolis: University of Minnesota Press., 1992. P. 30–61.
Alisauskas R. T., Devink J, M. Breeding costs, nutrient reserves, and cross-seasonal effects: dealing with deficits in sea ducks, Ecology and Conservation of North American Sea Ducks. Studies in Avian Biology N. 46. CRC Press, Boca Raton, FL, 2015. P. 125–168.
Arzel C., Dessborn L., Pöysä H., Elmberg J., Nummi P., Sjöberg K. Early springs and breeding performance in two sympatric duck species with different migration strategies, Ibis. 2014. Vol. 156, No. 2. P. 288–298. DOI: 10.1111/ibi.12134
Avilova K. V. The life cycle and number dynamics of urban mallard population (Anas platyrhynchos, Anseriformes, Aves) in Moscow, Biology Bulletin. 2016. Vol. 43, No. 9. P. 1212–1224. DOI: 10.1134/S1062359016110029
Balbontin J., Møller A. P., Hermosell I. G., Marzal A., Reviriego M., de Lope F. Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird, Journal of Animal Ecology. 2009. Vol. 78, No. 5. P. 981–989. DOI: 10.1111/j.1365-2656.2009.01573.x
Blums P., Clark R. G., Mednis A. Patterns of reproductive effort and success in birds: path analyses of long-term data from European ducks, Journal of Animal Ecology. 2002. Vol. 71, No. 2. P. 280–295. DOI: 10.1046/j.1365-2656.2002.00598.x
Charmantier A., Gienapp P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes, Evolutionary Applications. 2014. Vol. 7, No. 1. P. 15–28. DOI: 10.1111/eva.12126
Clark R. G., Pöysä H., Runko P., Paasivaara A. Spring phenology and timing of breeding in short-distance migrant birds: phenotypic responses and offspring recruitment patterns in common goldeneyes, Journal of Avian Biology. 2014. Vol. 45, No. 5. P. 457–465. DOI: 10.1111/jav.00290
Crick H. Q. P. The impact of climate change on birds, Ibis. 2004. Vol. 146, Suppl 1. P. 48–56.
Dawson A. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability, Philosophical Transactions of the Royal Society of London Series B – Biological Sciences. 2008. No. 1497. P. 1621–1633. DOI: 10.1098/rstb.2007.0004
Devries J. H., Brook R. W., Howerter D. W., Anderson M. G. Effects of spring body condition and age on reproduction in Mallards (Anas platyrhynchos), Auk. 2008. Vol. 125, No. 3. P. 618–628. DOI: 10.1525/auk.2008.07055
Dol'nik V. R. On the mechanism of photoperiodic control of the endogenous rhythm of sexual cyclicity in birds, Zoologicheskiy zhurnal. 1964. T. 43. Vyp. 5. P. 720–733.
Drever M. C., Clark R. G. Spring temperature, clutch initiation date and duck nest success: a test of the mismatch hypothesis, Journal of Animal Ecology. 2007. Vol. 76, No. 1. P. 139–148. DOI: 10.1111/j.1365-2656.2006.01183.x
Dubovsky J. A., Kaminski R. M. Potential reproductive consequences of winter-diet restriction in Mallards, Journal of Wildlife Management. 1994. Vol. 58, No. 4. P. 780–786. DOI: 10.2307/3809693
Dunn P. Breeding dates and reproductive performance, Birds and Climate Change. Advances in Ecological Research. Vol. 35, A. P. Møller, W. Fiedler, P. Berthold (eds.). San Diego: Elsevier Ltd, 2004. P. 69–87.
Dzus E. H., Clark R. G. Brood survival and recruitment of mallards in relation to wetland density and hatching date, Auk. 1998. Vol. 115, No. 2. P. 311–318. DOI: 10.2307/4089189
Fox A. D. Factors affecting the reproductive output northern hemisphere migratory Anatidae: The role of female conditions (a review), Anatidae 2000: An International Conference on the Conservation, Habitat Management and Wise Use of Ducks, Geese and Swans. Gibier Faune Sauvage. 1996. Vol. 13, No. 2. P. 635–651.
Grant T. A., Shaffer T. L. Time-specific patterns of nest survival for ducks and passerines breeding in North Dakota, Auk. 2012. Vol. 129, No. 2. P. 319–328. DOI: 10.1525/auk.2012.11064
Greenwood R. J., Sargeant A. B., Johnson D. H., Cowardin L. M., Shaffer T. L. Factors associated with duck nest success in the Prairie Pothole Region of Canada, Wildlife Monographs. 1995. No. 128. 57 p.
Guillemain M., Pöysä H., Fox A. D., Arzel C., Dessborn L., Ekroos J., Gunnarsson G., Holm T. E., Christensen T. K., Lehikoinen A., Mitchell C., Rintala J., Møller A. P. Effects of climate change on European ducks: what do we know and what do we need to know?, Wildlife Biology. 2013. Vol. 19, No. 4. P. 404–419. DOI: 10.2981/12-118
Gurney K. E. B., Clark R. G., Slattery S. M. Seasonal variation in pre-fledging survival of lesser scaup Aythya affinis: hatch date effects depend on maternal body mass, Journal of Avian Biology. 2012. Vol. 43, No. 1. P. 68–78. DOI: 10.1111/j.1600-048X.2011.05490.x
Hammer Ø., Harper D. A. T., Ryan P. D. PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontologia Electronica. 2001. Vol. 4, No. 1, art. 4. 9 p. URL: http://palaeo-electronica.org/2001_1/past/issue1_01.htm. http://folk.uio.no/ohammer/past.
Hammond M. C., Johnson D. H. Effects of Weather on Breeding Ducks in North Dakota, Fish and Wildlife Technical Report N 1. US Department of the Interior, Fish and Wildlife Service, Washington, DC, 1984. 19 p.
Hurrell J, National Center for Atmospheric Research Staff (eds). The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based). Retrieved from https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based. Last modified 24 Apr 2020.
Hurrell J. W., Kushnir Y., Ottersen G., Visbeck M. An overview of the North Atlantic Oscillation, The North Atlantic oscillation: climate significance and environmental impact. Geophysical Monograph Series. 2003. Vol. 134. P. 1–35. DOI: 10.1029/134GM01
Iovchenko N. P. Photoperiodic control of annual cycles in birds: modern knowkedge and perspectives for the study, Energetika i godovye cikly ptic (pamyati V. R. Dol'nika): Materialy mezhdunar. konf. M.: T-vo nauchnyh izdaniy KMK, 2015. P. 153–159.
Isakov Yu. A. Subfamily Anatinae, Pticy Sovetskogo Soyuza T. 4, Pod red. G. P. Dement'ev, N. A. Gladkov. M.: Sovetskaya nauka, 1952. P. 344–635.
Kirtman S. B., Power S. B., Adedoyin A. J., Boer G. J., Bojariu R., Camilloni I., Doblas-Reyes F. J., Fiore A. M., Kimoto M., Meehl G. A. Near-term climate change: Projections and predictability, Intergovernmental Panel on Climate Change. Cambridge University Press, 2014. P. 953–1028. DOI: 10.1017/CBO9781107415324.023
Klassen H. M. Underwood T. J. Sealy S. G. Czyrnyj A. A. 1130:LTISAD2.0.CO;2
Krapu G. L. Reynolds R. E. Sargeant G. A. Renner R. W. 0695:POVICS2.0.CO;2
Krapu G. L., Reinecke K. J. Foraging ecology and nutrition, Ecology and Management of Breeding Waterfowl, B. D. J. Batt, A. D. Afton, M. G. Anderson, C. D. Ankney, D. H. Johnson, J. A. Kadlec, G. L. Krapu (eds.). Minneapolis: University of Minnesota Press., 1992. P. 1–29.
Langford W. A., Driver E. A. Quantification of the relationship between Mallard nest initiation and temperature, Wildfowl. 1979. No. 30. P. 31–34.
Møller A. P., Fiedler W., Berthold P. (eds.). Effects of climate change on birds. Oxford University Press, 2010. 321 p.
McCarty J. P. Ecological consequences of recent climate change, Conservation Biology. 2001. Vol. 15, No. 2. P. 320–331. DOI: 10.1046/j.1523-1739.2001.015002320.x
McKellar A. E., Marra P. P., Hannon S. J., Studds C. E., Ratcliffe L. M. Winter rainfall predicts phenology in widely separated populations of a songbird, Oecologia. 2013. Vol. 172, No. 2. P. 595–605. DOI: 10.1007/s00442-012-2520-8
Mednis A. A. Blum P. N. Trapping of incubating duck females and their offspring, Kol'cevanie v izuchenii migraciy ptic fauny SSSR, Pod red. V. D. Il'icheva. M.: Nauka, 1976. P. 157–167.
Mednis A. A. The nesting biology of ducks on Lake Engure, Ekologiya vodoplavayuschih ptic Latvii, Pod red. H. A. Mihel'sona. Riga: Zinatne, 1968. P. 85–108.
Mihant'ev A. I. Selivanova M. A. Variability of incubation period in ducks, Aktual'nye voprosy izucheniya ptic Sibiri: Materialy Sibirskoy ornitologicheskoy konf. Barnaul, 2005. P. 94–98.
Mihant'ev A. I. Selivanova M. A. Variation in duck clutch size, Sibirskiy ekologicheskiy zhurnal. 2008. T. 15, No. 1. P. 187–194.
Murton R. K., Kear J. Photoperiodism in waterfowl: phasing of breeding cycles and zoogeography, Journal of Zoology, Lond. 1978. Vol. 186, No. 2. P. 243–283. DOI: 10.1111/j.1469-7998.1978.tb03368.x
Nesterov E. S. Low-frequency variability of atmospheric circulation and the level of the Caspian Sea in the second half of the 20th century, Meteorologiya i gidrologiya. 2001. No. 11. P. 27–36.
Oja H., Pöysä H. Spring phenology, latitude, and the timing of breeding in two migratory ducks: implications of climate change impacts, Annales Zoologici Fennici. 2007. No. 44. P. 475–485.
Onno S. Nesting time of waterfowl and shorebirds in the Matsalu Nature Reserve (Estonian SSSR), Soobschenie Pribaltiyskoy komissii po izucheniyu migraciy ptic. No. 8. Tartu, 1975. P. 107–155.
Parmesan C., Yohe G. A globally coherent fingerprint of climate change impacts across natural systems, Nature. 2003. Vol. 421. P. 37–42.
Pattenden R. K., Boag D. A. Effects of body mass on courtship, pairing, and reproduction in captive Mallards, Canadian Journal of Zoology. 1989. Vol. 67, No. 2. P. 495–501. DOI: 10.1139/z89-072
Pavón-Jordán D., Santangeli A., Lehikoinen A. Effects of flyway-wide weather conditions and breeding habitat on the breeding abundance of migratory boreal waterbirds, Journal of Avian Biology. 2017. Vol. 48, No. 7. P. 988–996. DOI: 10.1111/jav.01125
Rainio K., Laaksonen T., Ahola M., Vähätalo A. V., Lehikoinen E. Climatic response in spring migration of boreal and arctic birds in relation to wintering area and taxonomy, Journal of Avian Biology. 2006. Vol. 37, No. 5. P. 507–515. DOI: 10.1111/j.0908-8857.2006.03740.x
Rockwell S. M., Bocetti C. I., Marra P. P. Carry-over effects of winter climate on spring arrival date and reproductive success in an endangered migratory bird, Kirtland’s Warbler (Setophaga kirtlandii), Auk. 2012. Vol. 129, No. 4. P. 744–752. DOI: 10.1525/auk.2012.12003
Sedinger J. S., Alisauskas R. T. Cross-seasonal effects and the dynamics of waterfowl populations, Wildfowl. 2014. Special Issue 4. P. 277–304.
Sokolov L. V. Climate in the life of plants and animals. SPb.: Tessa, 2010. 344 p.
Vähätalo A., Rainio K., Lehikoinen A., Lehikoinen E. Spring arrival of birds depends on the North Atlantic Oscillation, Journal of Avian Biology. 2004. Vol. 35, No. 3. P. 210–216. DOI: 10.1111/j.0908-8857.2004.03199.x
Veen J., Yurlov A. K., Delany S. N., Mihantiev A. I., Selivanova M. A., Boere G. C. An atlas of movements of Southwest Siberian waterbirds. Wetlands International, Wageningen, The Netherlands, 2005. 60 p.
Westerskov K. Methods for Determining the age of game bird eggs, The Journal of Wildlife Management. 1950. Vol. 14, No. 1. P. 56–67. DOI: 10.2307/3795978
Whyte R. J., Baldassarre G. A., Bolen E. G. Winter condition of mallards on the southern High Plains of Texas, The Journal of Wildlife Management. 1986. Vol. 52, No. 1. P. 52–57. DOI: 10.2307/3801487
Yurlov A. K. Mihant'ev A. I. Selivanova M. A. Influence of environmental factors on the productivity of waterbirds in the south of Western Siberia, Sibirskiy ekologicheskiy zhurnal. 1994. T. 1, No. 4. C. 347–353.
Žalakevičius M., Bartkevičienė G., Ivanauskas F., Nedzinskas V. The response of spring arrival dates of non-passerine migrants to climate change: A case study from Eastern Baltic, Acta Zoologica Lituanica. 2009. Vol. 19, No. 3. P. 155–171. DOI: 10.2478/v10043-009-0029-0