Vodunon N., Tokinova R. Morphometric analysis of sexual dimorphism of Asellus aquaticus (Crustacea) at the micropopulation level // Principy èkologii. 2021. № 1. P. 4‒17. DOI: 10.15393/j1.art.2021.11082

Issue № 1

Original research


Morphometric analysis of sexual dimorphism of Asellus aquaticus (Crustacea) at the micropopulation level

   Nailya R.
PhD, Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, vodounonnr@gmail.com
   Rimma P.
PhD, Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, r.tokin@rambler.ru
sexual dimorphism
Asellus aquaticus
spring lake
morphometric structure
statistical analysis
Summary: We carried out a comparative analysis of the morphometric structure and degree of sexual dimorphism in freshwater crustaceans Asellus aquatics from a small spring lake in the nature reserve “Golubye ozera”. On the example of micropopulations with different average seasonal density from two biocenoses: the algae Chara contraria (4.63 thousand ind./ m2) and leaf moss Fontinalis antipyretica (2.27 thousand ind./ m2 ), we considered dimensional characteristics of the body and limbs of sexually mature and pre-reproductive individuals. Differences in morphometric parameters between the sexes were analyzed using discriminant analysis and ANOVA. It was revealed that females and males significantly differ from each other in the length of the body, false-pincer (propodite L1) and carpopodite L5, as well as pleotelson width. The body size is subject to the greatest variance of the listed features. When compared at the micropopulation level, in females, the greatest load falls on the body length. In males, the aspecting signs of discrimination are the length of false-pincer and carpopodite L5. Differences in the coefficient of sexual dimorphism are most pronounced in the length of the false-pincer and carpopodite L5. Among the studied phenotypic traits, the head length demonstrates the smallest differences between the sexes and between individuals of the compared micropopulations. It is assumed that the spatial heterogeneity of the morphometric structure of crustaceans is due to different density of micropopulations and the regulatory mechanisms of fertility and behavior associated with it. Changing the size of females is a possible manifestation of the fertility regulation mechanism; in males, density affects behavioral responses that contribute to success in finding and retaining a partner at the precopula stage.

© Petrozavodsk State University

Reviewer: D. Sidorov
Received on: 15 July 2020
Published on: 28 March 2021


Andersson M. Sexual Selection. Princeton: Princeton Uniersity Press, 1994. 599 p.

Arriaga‐Osnaya B. J. Are body size and volatile blends honest signals in orchid bees?, Ecology and Evolution. 2017. Vol. 7. Issue 9. P. 3037–3045. DOI: 10.1002/ece3.29

Avila G. A., Withers T. M., Holwell G. I. Courtship and mating behaviour in the parasitoid wasp Cotesia urabae (Hymenoptera: Braconidae): mate location and the influence of competition and body size on male mating success, Bull. of Entomol. Res. 2017. Vol. 107. R. 439–447. DOI: 10.1017/S0007485316001127

Balesdent M. L. Recherches sur la sexualité et le déterminisme des caractères sexuels d’Asellus aquaticus Linné (Crustacé Isopode). Unpubl. DPhil Thes. Univ. de Nancy, 1964. 231 r.

Bertin A., Cezilly F. Density-dependent influence of male characters on mate-locating efficiency and pairing success in the waterlouse Asellus aquaticus: An experimental study, The Zoological Soc. of London J. of zoology. 2005. Vol. 265. Issue 4. P. 333–338. DOI: 10.1017/S0952836905006400

Bertin A., David B., Cezilly P. Quantification of sexual dimorphism in Asellus aquaticus (Crustacea: Isopoda) using outline approaches, J. of the Linnean Soc. 2002. Vol. 77. P. 523–533. DOI: 10.1046/j.1095-8312.2002.00125.x

Bessokirnaya G. P. Discriminant Analysis for Selecting Informative Variables, Sociologiya:4M. 2003. No. 16. P. 25–35.

Birshteyn Ya. A. Freshwater Donkey (Asellota). M.; L.: AN SSSR, 1951. 142 p.

Borovikov V. P. CA. STATISTICA. The art of data analysis on a computer. SPb.: Piter, 2003. 687 p.

Chown S. L. Temporal biodiversity change in transformed landscapes: a southern African percpective, Philosoph. Trans. of the Royal Soc. Biol. Scien. 2010. Nov. P. 3729–3742. DOI: 10.1098/rstb.2010.0274

Chown S. L., Gaston K. J. Body size variation in insects: a macroecological perspective, Biological Reviews. 2010. Vol. 85. Issue 1. P. 139–169. DOI: 10.1111/j.1469-185X.2009.00097.x

Ermakov E. L. Rusanovskaya O. O. Seasonal dynamics of the phenotypic structure of a natural population of Epischura baicalensis Sars on quantitative morphological traits, Sibirskiy ekologicheskiy zhurnal. 2015. No. 2. P. 238–247.

Halafyan A. A. Statistica 6. Statistical data analysis. M.: OOO Binom-Press, 2008. 512 p.

Hendry A. P., Farrugia T. J., Kinnison M. T. Human influences on rates of phenotypic change in wild animal populations, Molecular Ecology. 2008. Vol. 17. Issue 1. P. 20–29.

Hmeleva N. N. Patterns of reproduction of crustaceans. Minsk: Nauka i tehnika, 1988. 204 p.

Honěk A. Intraspecific Variation in Body Size and Fecundity in Insects. A General Realationship, Oikos. 1993. Vol. 66, No 3. P. 483–492. DOI: 10.2307/3544943

Jormalainen M. S., Tuomi J. Male Choice and Male‐male Competition in Idotea baitica (Crustacea, Isopoda), Ethology. 1994. Vol. 96. Issue 1. P. 46–57.

Kingsolver J. G., Huey R. B. Size, temperature and fitness: three rules, Evol. Ecology Res. 2008. Vol. 10. P. 251–268.

Konec M., Prevorcnic S., Sarbu M., Verovnik R., Trontelj P. Parallels between two geographically and ecologically disparate cave invasions by the same species Asellus aquaticus (Isopoda, Crustacea), J. of Evol. Biology. 2015. Vol. 28. P. 864–875.

Lindenfors P., Székely T., Reynolds J. D. Directional changes in sexual size dimorphism in shorebirds, gulls and alcids, J. of Evol. Biology. 2003. Vol. 16. Issue 5. P. 930–938. DOI: 10.1046/j.1420-9101.2003.00595.x

Maltby L. Pollution as a probe of life-history adaptation in Asellus aquaticus (Isopoda), Oikos. 1991. Vol. 61. No. 1. P. 11–18.

Mariappan P., Balasundaram Ch. Studies on the morphometry of Macrobrachium nobilii (Decapoda, Palaemonidae), Brazilian Arch. of Biol. and Technol. 2004. Vol. 47 (3). P. 441–449.

Mladenova A. G. The dependence of the growth of the water donkey on temperature, Gidrobiologicheskiy zhurnal. 1991. T. 27, No. 2. C. 100–105.

Murphy P. M., Learner M. A. The life history and production of Asellus aquaticus (Crustacea: Isopoda) in the River Ely, South Wales, Freshw. Biol. 1982. Vol. 12 (5). P. 435–444. DOI: 10.1111/j.1365-2427.1982.tb00638.x

Panov V. E. Growth and production of Asellus aquaticus (L.) in the littoral vegetation of the Neva Bay of the Gulf of Finland, Issledovaniya presnovodnyh i morskih bespozvonochnyh zhivotnyh (Trudy Zoologicheskogo instituta). L.: AN SSSR, 1986. T. 152. P. 142–161.

Pincheira-Donoso D., Hunt J. Fecundity selection theory: concept and evidence, Biological Reviews. 2015. Vol. 92. Issue 1. P. 341–356. DOI: 10.1111/brv.12232

Pinheiro M. A., Fransozo A. Sexual maturity of the speakled swimming crab Araneus cribrius (Lamarc 1818) (Crustacea, Brachyura, Portunidae) in Ubatuda Litoral, Sao Paulo State, Brazil, Crustaceana. 1998. Vol. 71. P. 434–452.

Prevorcnik S., Blejec A., Sket B. Racial differentiation in Asellus aquaticus (L.) (Crustacea: Isopoda: Asellidae), Hydrobiologya. 2004. Vol. 160. No. 2. P. 193–214.

Raihani G., Székely T., Serrano-Meneses M. A., Pitra C., Goriup P. The influence of sexual selection and male agility on sexual size dimorphism in bustards (Otididae), Animal behavior. 2006. Vol. 71. P. 833–838. DOI: 10.1016/j.anbehav.2005.06.013

Sandercock B. K. What is the relative importance of sexual selection and ecological processes in the evolution of sexual size dimorphism in monogamous shorebirds?, Wader Study Group Bull. 2001. Vol. 96. P. 64–70.

Sanderock B. K. Assortative mating and sexual size dimorfism in westernand semipalmated sandpipers, Auk. 1998. Vol. 115. P. 786–791.

Shpak A. D. Reproduction and production of the water donkey (Asellus aquaticus L.) in Lake Shogoyarvi, Gidrobiologicheskiy zhurnal. 1976. T. 12, No. 1. C. 104–105.

Shvarc S. S. Evolutionary Animal Ecology: Ecological Mechanisms of the Evolutionary Process. Sverdlovsk: RISO UF AN SSSR, 1969. 199 p.

Silva F. R. J., Battirola L. D., Lhano M. G., Sousa W. O., Marques M. I. Morphometry of Cornops aquati­cum (Orthoptera: Acrididae: Leptysminae) in the Pantanal of Mato Grosso, Brazil, Brazilian Journ. of Biology. 2014. Vol. 74. No. 3. P. 730–738. DOI: 10.1590/bjb.2014.0068

Stillwell R. C., Blanckenhorn W. U., Teder T., Davidowitz G., Fox Ch. W. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects, Annu Rev Entomol. 2010. Vol. 55. P. 227–245. DOI: 10.1146/annurev-ento-112408-085500

Svensson E. I., Abbot J. K., Gosden T. P., Coreau A. Female polymorphism, sexual conflict and limits to speciation processes in animals, Evolutional Ecology. 2009. Vol. 23. P. 93–108.

Teder T., Tammaru T. Sexual size dimorphism within species increases with body size in insects, Oikos. 2005. Vol. 108 (2). P. 321–334.

Tokinova R. P. Berdnik S. V. Butorova L. E. Lyubarskiy D. S. Andreeva M. G. Abramova K. I. Lyubin P. A. Biodiversity of Golubye lakes near Kazan, Rossiyskiy zhurnal prikladnoy ekologii. 2017. No. 4. P. 16–20.

Vitagliano G., Fano E. A., Marchetti E., Colangelo M. A., Vitagliano E. Importance of longevity, growth, and diapause in the evolution of Asellus aquaticus, Bolletino di zoologia. 1991. Vol. 3. P. 125–131.

Zheltenkova M. V. Reproduction and growth of water donkeys (Asellus aquaticus L.), Trudy Vsesoyuznogo gidrobiologicheskogo obschestva. 1952. T. 4. P. 132–150.

Zhemaeva N. P. Asellus aquaticus L. and Gammarus pulex (L.) as objects of introduction to fish ponds: Avtoref. dip. ... kand. biol. nauk. M., 1988. 23 p.

Displays: 1981; Downloads: 916;