Puzachenko A. The Shannon–Hartley Law and the limit of self-ordering of biological systems // Principy èkologii. 2020. № 3. P. 28‒44. DOI: 10.15393/j1.art.2020.10822


Issue № 3

Conference proceedings May 22, 2020

pdf-version

The Shannon–Hartley Law and the limit of self-ordering of biological systems

Puzachenko
   Andrey Yuryevich
DSc, Geography institut RAS, 119017, Moskow, Staromonetny st., 29, puzak@igras.ru
Keywords:
Shannon – Hartley Law
self-organisation
biological systems
Summary: Biological systems belong to a special class of physical systems that are characterized by the ability to simultaneously self-organize and evolve. Any interaction of material systems is accompanied by the synthesis-transmission-reception of information. The Shannon – Hartley law limits the throughput capacity of an information channel. Following W. R. Ashby, we associate self-regulation/self-organization with the limitations of the system controller's throughput capacity. It is assumed that the throughput capacity of the controller can be indirectly determined based on the Shannon redundancy value (= measure of organization, R). The theoretical value of R for the inflection point of the throughput graph is about 0.31. It is assumed that self-organization is accompanied by an increase in order. This hypothesis was tested on examples of strong internal organization (mammalian skulls and metapodial bones). It was shown that the controller does not provide strict control of the size/shape of the skull and postcranial bones, but supports an unexpectedly high variety of these morphological systems (R < 0.31). The study of the measure of organization in the postnal ontogenesis of the beaver and common mole rat (Rodentia) confirms this position. We assumed that the throughput of the controller of complex systems is bounded from above (the inflection point on the throughput graph), and the level of diversity of the system itself is the asymptotic maximum of the throughput capacity on the same graph. According to the level of internal ordering, the studied systems belong to the category of probabilistic-deterministic ones. During the discussion of the results we used the ideas from the works of Yu. Puzachenko.

© Petrozavodsk State University

Reviewer: G. S. Rozenberg
Reviewer: Y. N. Litvinov
Received on: 16 June 2020
Published on: 06 October 2020

References

Abramov A. V., Puzachenko A. Y. Species Co-Existence and Morphological Divergence in West Siberian Mustelids (Carnivora, Mustelidae), Mammal Study. 2012. Vol. 37 (3). P. 255–259.

Ashby W. R. Principles of the self-organizing system, Principles of Self-organization: Transactions of the University of Illinois Symposium, Eds. H. Von Foerster, G. W. Zopf. London: Pergamon Press, 1962. P. 255–278.

Ashby W. R. An introduction to cybernetics. London: Chapman & Hall, 1956. 295 p.

Ashby W. R. Principles of the self-organizing dynamic system, Journal of General Psychology. 1947. Vol. 37. P. 125–128.

Ashby W. R. Requisite variety and its implications for the control of complex systems, Cybernetica. 1958. Vol. 1 (2). P. 83–99.

Atlan H. Sources of Information in Biological Systems, IFAC Proceedings Volumes. 1977. Vol. 10 (12). P. 177–184.

Bir S. Management cybernetics. M.: Fizmatgiz, 1963. 275 p.

Brillyuen L. Science and information theory. M.: Gop. izd-vo fiziko-matematicheskoy lit-ry, 1960. 392 p.

Collier J. Information in Biological Systems, Handbook of Philosophy of Science. Vol. 8: Philosophy of Information. Amsterdam: Elsevier, 2008. P. 763–787.

Conant R. C., Ashby R. W. Every good regulator of a system must be a model of that system, International Journal of Systems Science. 1970. Vol. 1 (2). P. 89–97.

Foerster H. von. On Self-Organizing Systems and Their Environments, Self-Organizing System. 1960. Vol. 50. P. 31–50.

Haken G. [Information and self-organization: a macroscopic approach to complex systems. M.: Mir, 1991. 240 p.

Hartley R. V. L. Transmission of Information, Bell System Technical Journal. 1928. Vol. 7 (3). P. 535–563.

Hawking S. The Theory of Everything: The Origin and Fate of the Universe. California, Beverly Hills: New Millenium Press, 2002. 176 p.

Mayncer K. Complex system thinking: matter, mind, humanity. New synthesis. M.: Knizhnyy dom «LIBROKOM», 2009. 464 p.

Mayr E. What evolution is. NY: Basic Books, 2001. 318 p.

McCowan B., Hanser S. F., Doyle L. R. Using information theory to assess the diversity, complexity, and development of communicative repertoires, Journal of Comparative Psychology. 2002. Vol. 116 (2). P. 166–172.

Nyquist H. Certain Factors Affecting Telegraph Speed, Bell System Technical Journal. 1924. Vol. 3 (2). P. 324–346.

Nyquist H. Certain Topics in Telegraph Transmission Theory, Transactions of the American Institute of Electrical Engineers. 1928. Vol. 47 (2). P. 617–644.

Puzachenko A. Y., Korablev N. P. Morphological diversity in the postnatal skull development in representatives of two families of rodents (Spalacidae, Castoridae, Rodentia), Russian Journal of Developmental Biology. 2014. Vol. 45 (3). P. 149–162.

Puzachenko A. Y., Markova A. K. Using multidimensional analysis and information functions for macro description of European natural complexes in the second part of the Late Pleistocene and the Holocene, Doklady Earth Sciences. 2011. Vol. 437 (1). P. 380–382.

Puzachenko A. Yu. Application of multidimensional scaling in the analysis of the structure of morphological diversity, Sistematika i filogeniya gryzunov i zayceobraznyh, Pod red. A. K. Agadzhanyana, V. N. Orlova. M.: RASHN, 2000. P. 137–140.

Puzachenko A. Yu. Informational variables of mammals morphometric diversity, Teriofauna Rossiya i sopredel'nyh territorii: Materialy Mezhdunar. sovesch. (IX S'ezd Teriologicheskogo obschestva pri RAN). M.: Tovarischestvo nauchnyh izdaniy KMK, 2011. P. 384.

Puzachenko A. Yu. Intrapopulation variability of the skull in the common mole rat Spalax microphthalmus (Spalacidae, Rodentia). 1. Method of data analysis, not age-related variability of males, Zoologicheskiy zhurnal. 2001. T. 80 (3). P. 1–15.

Puzachenko A. Yu. Invariants and dynamics of morphological diversity (on the example of the mammalian skull): Dip. … d-ra biol. nauk. M., 2013. 417 p.

Puzachenko A. Yu. The quantitative patterns of the morphological diversity of the mammalian skull, Sbornik trudov Zoologicheskogo muzeya MGU. T. 54, Pod red. I. Ya. Pavlinova, M. V. Kalyakina, A. V. Sysoeva. M.: Tovarischestvo nauchnyh izdaniy KMK, 2016. P. 229–268.

Puzachenko J. G. Information and information flows in the biosphere, Encyclopedia of Ecology, Eds. S. E. Jørgensen, B. D. Fath. Oxford: Elsevier, 2008. P. 108–110.

Puzachenko Yu. G. Biodiversity, sustainability and functioning, Problemy ustoychivosti biologicheskih sistem. M.: IEMEZh AN SSSR, 1982. P. 5–32.

Puzachenko Yu. G. Biological diversity in the biosphere: systemological and semantic analysis, Biosfera. 2009. T. 1 (1). P. 025–038.

Puzachenko Yu. G. General methodological issues of information, Ekoinformatika. Teoriya. Praktika. Metody i sistemy, Pod red. akad. V. E. Sokolova. SPb.: Gidrometeoizdat, 1992. P. 7–84.

Puzachenko Yu. G. Global biological diversity and its spatial and temporal variability, Sovremennye global'nye izmeneniya prirodnoy sredy. T. 2. M.: Nauchnyy mir, 2006. P. 306–377.

Puzachenko Yu. G. Principles of information analysis, Statisticheskie metody issledovaniya geosistem. Vladivostok, 1976. P. 38–46.

Puzachenko Yu. G. Problems in the study of biological diversity in mountain regions, Mlekopitayuschie gornyh territoriy: Materialy Mezhdunar. konf. M.: Tovarischestvo nauchnyh izdaniy KMK, 2007. C. 256–266.

Puzachenko Yu. G. Rank distributions in ecology and non-extensive statistical mechanics, Sbornik trudov Zoologicheskogo muzeya MGU. T. 54, Pod red. I. Ya. Pavlinova, M. V. Kalyakina, A. V. Sysoeva. M.: Tovarischestvo nauchnyh izdaniy KMK, 2016. P. 42–71.

Schneider T. D. Evolution of biological information, Nucleic Acids Research. 2000. Vol. 28 (14). P. 2794–2799.

Schrödinger E. What is Life? The Physical Aspect of the Living Cell. N. Y.: Cambridge University Press, 2012. P. 1–90.

Shannon C. E. A Mathematical Theory of Communication, Bell System Technical Journal. 1948. Vol. 27. P. 379–423, 623–656.

Shannon C. E. Communication in the Presence of Noise, Proceedings of the IRE. 1949. Vol. 37 (1). P. 10–21.

Shannon C. E., Weaver W. The mathematical theory of communication. Urbana, IL: University of Illinois Press, 1949. 35 p.

Tkačik G., Bialek W. Information Processing in Living Systems, Annual Review of Condensed Matter Physics. 2016. Vol. 7 (1). P. 89–117.

Viner N. Cybernetics, or control and communication in the animal and machine. 2-e izd. M.: Nauka, 1983. 344 p.

Zotin A. I. Zotin A. A. Direction, speed and mechanisms of progressive evolution: Thermodynamic foundations. M.: Nauka, 1999. 317 p.

Displays: 2853; Downloads: 515;