Smirnov L., Sukhovskaya I., Kochneva A. Variability of some antioxidant defense parameters and concentration of protein in the larvae of the three-spined stickleback (GASTEROSTEUS ACULEATUS) in White sea in the summer // Principy èkologii. 2019. № 2. P. 98‒109. DOI: 10.15393/j1.art.2019.8542


Issue № 2

Original research

pdf-version

Variability of some antioxidant defense parameters and concentration of protein in the larvae of the three-spined stickleback (GASTEROSTEUS ACULEATUS) in White sea in the summer

Smirnov
   Lev
DSc, Institute of Biology of Karelian Research Centre Russian Academy of Sciences, levps@rambler.ru
Sukhovskaya
   Irina
PhD, Institute of Biology of Karelian Research Centre Russian, sukhovskaya@inbox.ru
Kochneva
   Albina
Institute of Biology of Karelian Research Centre Russian, ko4neva93@yandex.ru
Keywords:
threespine stickleback
protein
glutathione
glutathione S-transferase
guajacol peroxidase
catalase
Summary: The content of protein and glutathione in the tissues of fries of the three-spined stickleback and the activity of glutathione S-transferase and guaiacol peroxidase changed in the process of growth from July to August. They were different in larvae from the lagoon Kolyskovaya , in those from the Bay Seldjanaja and from the channel Sukhaya Salma. In the Bay Seldjanaja and the channel Sukhaya Salma, the food reserve is sufficient for feeding and growth of fries, while the biodiversity and the number of food objects in the Kolyushkovaya lagoon are extremely low. It has a negative impact on the larvae, which affect their weight, protein accumulation, and lead to the activation of both enzymes of antioxidant protection (glutathione S-transferase and guaiacol peroxidase). In the larvae from the channel Sukhaya Salma the decrease in the average weight as well as in the levels of glutathione and activity of glutathione S-transferase were revealed. These changes are probably related to the lower temperature in this biotope. Therefore, in August fries hatched in July prevailed; they are characterized by lower values of the above indicators.

© Petrozavodsk State University

Reviewer: D. Lajus
Received on: 14 December 2018
Published on: 02 July 2019

References

Barber I. Sticklebacks as model hosts in ecological and evolutionary parasitology, Trends Parasitol. 2013. Vol. 29 (11). P. 556–566. DOI: 10.1016/j.pt.2013.09.004.

Beers R. F., Sizer I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase, Biol. Chem. 1952. Vol. 195. No 1. P. 133–140.

Benjamini Y., Hochberg Y. On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics, Journal of Educational and Behavioral Statistics. 2000. Vol. 25. No 1. P. 60–83. DOI: 10.3102/10769986025001060

Chance B., Maehly A. C. Assay of catalase and peroxidases, Methods Enzymol. 1955. Vol. 2. P. 764–775.

Demchuk A. S. Ivanov M. V. Ivanova T. S. Polyakova N. V. Golovin P. V. Layus D. L. Feeding of the threespine stickleback Gasterosteus aculeatus (Linnaeus, 1758) in spawning grounds, Trudy Karel'skogo nauchnogo centra RAN. 2018. No. 4. P. 1–17. DOI: 10.17076/them818.

Dorgam A. C. Golovin P. V. Ivanova T. S. Ivanov M. V. Savel'ev P. D. Layus D. L. Morphological variation of threespine stickleback (Gasterosteus aculeatus) at different stages of spawning period, Trudy KarNC RAN. 2018. No. 4. P. 59–73. DOI: 10.17076/them819.

Forgati M., Kandalski P. K., Herrerias T., Zaleski T., Machado C., Souza M. R. D. P., Donatti L. Effects of heat stress on the renal and branchial carbohydrate metabolism and antioxidant system of Antarctic fish, J. Comp. Physiol. B. 2017. Vol. 187. P. 1137–1154. DOI: 10.1007/s00360-017-1088-3.

Grim J. M., Hyndman K. A., Kriska T., Girotti A. W., Crockett E. L. Relationship between oxidizable fatty acid content and level of antioxidant glutathione peroxidases in marine fish, J. Exp. Biol. 2011. Vol. 214. P. 3751–3759.

Grim J. M., Simonik E. A., Semones M. C., Kuhn D. E., Crockett E. L. The glutathione dependent system of antioxidant defense is not modulated by temperature acclimation in muscle tissues from striped bass, Morone saxatilis, Comp. Biochem. Physiol. 2013. Vol. A 164. P. 383–390.

Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem. 1974. Vol. 249. No 22. P. 7130–7139.

Hissin P. J., Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues, Analytical Biochemistry. 1976. Vol. 74. No 1. P. 214–226.

Ivanter E. V. Korosov A. V. Introduction in the quantitative biology: study guide. 3-e izd., ispr. i dop. Petrozavodsk: Izd-vo PetrGU, 2014. 298 p.

Klein R. D., Borges V. D., Rosa C. E., Colares E. P., Robaldo R. B., Martinez P. E., Bianchini A. Effects of increasing temperature on antioxidant defense system andoxidative stress parameters in the Antarctic fish Notothenia coriiceps and Notothenia rossii, Journal of Thermal Biology. 2017. Vol. 68. P. 110–118. DOI: 10.1016/j.jtherbio.2017.02.016.

Layus D. L. Ivanova T. S. Shatskih E. V. Ivanov M. V. “Waves of Life” of the White Sea stickleback, Priroda. 2013. No. 4. P. 43–52. http://ras.ru/publishing/nature.aspx

Leggatt R. A., Brauner C. J., Schulte P. M., Iwama G. K. Effects of acclimation and incubation temperature on the glutathione antioxidant system in killifish and RTH-149 cells, Comp. Biochem. Physiol. A. 2007. Vol. 146. P. 322–328.

Machado C., Zaleski T., Rodrigues E., Carvalho C. S., Cadena S. M. S. C. G., Gustavo J., Krebsbach P., Rios F. S., Donatti L. Effect of temperature acclimation on the liver antioxidant defence system of the Antarctic nototheniids Notothenia coriiceps and Notothenia rossi, Comparative Biochemistry and Physiology. Part B. 2014. Vol. 172–173. P. 21–28.

Madeira D., Narciso L., Cabral H. N., Vinagre C., Diniz M. S. Influence of temperature in thermal and oxidative stress responses in estuarine fish, Comparative Biochemistry and Physiology. Part A. 2013. Vol. 166. P. 237–243.

Menezes S., Soares A. M. V. M., Guilhermino L., Peck M. R. Biomarker responses of the estuarine brown shrimp Crangon crangon L. to non-toxic stressors: Temperature, salinity and handling stress effects, Journal of Experimental Marine Biology and Ecology. 2006. Vol. 335. P. 114–122.

Souza M. R. D. P., Herrerias T., Zaleski T., Forgati M., Kandalski P. K., Machado C., Silva D. T., Piechnik C. A., Moura M. O., Donatti L. Heat stress in the heart and muscle of the Antarctic fishes Notothenia rossii and Notothenia coriiceps: Carbohydrate metabolism and antioxidant defence, Biochimie. 2018. Vol. 146. P. 43–55. DOI: 10.1016/j.biochi.2017.11.010.

Suhovskaya I. V. Borvinskaya E. V. Bahmet I. N. Nemova N. N. Smirnov L. P. The influence of thermostress on the level of glutathione and the activity of glutathione S-transferase in mussels Mytilus edulis L., Trudy Karel'skogo nauchnogo centra RAN. 2014. No. 5. P. 150–156.

Suhovskaya I. V. Borvinskaya E. V. Smirnov L. P. Nemova N. N. Comparative analysis of the methods for determining protein concentration – spectrophotometry in the range of 200–220 nm and the Bradford protein assay, Trudy KarNCRAN. Ser. Eksperimental'naya biologiya. 2010. No. 2. P. 68–71.

Vinagre P., Madeira D., Narciso L., Cabral H. N., Diniz M. Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile sea bass, Dicentrarchus labrax, Ecological Indicators. 2012. Vol. 23. P. 274–279.

Yuksel S., Asma D., Yesilada O. Antioxidative and methabolic responses to extended cold exposure to extended cold exposure in rats, Acta Biol. Huang. 2008. Vol. 59. No 1. P. 57–66. DOI: 10.1556/ABiol.59.2008.1.5.

Zhang H., Forman H. J. Glutathione synthesis and its role in redox signaling, Semin Cell Dev Biol. 2012. Vol. 23. P. 722–728.

Displays: 471; Downloads: 54;