Vysotskaya R., Buey E., Murzina S., Nemova N. Acid hydrolases of lysosomes in the adaptive reactions of herring Clupea pallasi marisalbi Berg (Clupeidae) from different bays of the White Sea // Principy èkologii. 2018. № 4. P. 65‒76. DOI: 10.15393/j1.art.2018.8083


Issue № 4

Original research

pdf-version

Acid hydrolases of lysosomes in the adaptive reactions of herring Clupea pallasi marisalbi Berg (Clupeidae) from different bays of the White Sea

Vysotskaya
   Rimma Ul
D.Sc., FITZ Karelian research centre of RAS, rimma@bio.krc.karelia.ru
Buey
   Elizaveta Andreevna
FITZ Karelian research centre of RAS, elizaveta.vdovichenko@gmail.com
Murzina
   Svetlana Aleksandrovna
PhD, FITZ Karelian research centre of RAS, murzina.svetlana@gmail.com
Nemova
   Nina Nikolaevna
D.Sc., FITZ Karelian research centre of RAS, nemova@krc.karelia.ru
Keywords:
herring Clupea pallasi marisalbi Berg
lysosomal enzymes
White Sea bays
biochemical adaptation
Summary: The comparative study of the activity of lysosomal enzymes (acid phosphatase, RNase, DNase, β-glucosidase, β-galactosidase, β-glucuronidase) was carried out in the tissues of herring Clupea pallasi marisalbi Berg from the Kandalaksha, Onega and Dvina Bays of the White Sea. These are distinct both in hydrological parameters and in anthropogenic impact. It was shown that activity of most acid hydrolases in the liver, gills and muscles was significantly higher in fish from the Onega and Dvina Bays. It may indicate that the herring tissue lysosomes take part in adaptive metabolic rearrangements in response to a variety of environmental factors specific for the studied biotopes. In the Onega Bay these factors are lower temperatures and industrial drains, whereas in the Dvinsky Bay they are freshening, oxygen deficiency and the high degree of water pollution. The main targets are gills involved in the processes of respiration and osmotic regulation, as well as the liver responsible for the biosynthesis of macromolecules necessary for the body and the biotransformation of endogenous metabolites and xenobiotics. According to our data, acidic phosphatase, RNase and β-glucuronidase make the greatest contribution to the compensation of the possible effect of environmental factors and maintenance of fish homeostasis. The highest activity of lysosomal enzymes was detected in fish gonads from the Kandalaksha Bay. It can be explained by the higher maturity of the fish in comparison with the representatives of other local populations. Minor differences in DNase activity in C. pallasi marisalbi Berg from different Bays are most likely the evidence of low involvement of the genome in adaptive responses of studied fish.

© Petrozavodsk State University

Reviewer: O. Lukyanova
Received on: 30 May 2018
Published on: 24 December 2018

References

Barret A. Hit M. F. Lysosomal enzymes, Lizosomy. Metody issledovaniya. M.: Mir, 1980. P. 25−56.

Berger V. Ya. Production potential of the White Sea. Study of marine fauna. T. 60 (68). SPb.: ZIN RAN, 2007. 292 p.

Bull H., Murray P. G., Thomas D., Fraser A. M., and Nelson P. N. Acid phosphatases, Mol. Pathology. 2002. Vol. 55. No 2. P. 65−72. DOI: 10.1136/mp.55.2.65.PMC1187150.PMID11950951.

Chilke A. M. Kinetic study of hepatic β-glucuronidase in the Indian major carp, Labeo rohita (Hamilton), Fish. Physiol. Biochem. 2010. Vol. 36. No 4. P. 1145−1149.

Evans D. H., Piermarini P. M., Choe K. P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste, Physiol. Rev. 2005. Vol. 85. P. 97−177.

Gubler E. V. Genkin A. A. Application of criteria of nonparametric statistics for estimating differences between two study groups in biomedical research. M.: Medicina, 1969. 29 p.

Ivanter D. E. Ryzhkov L. P. Fish. Petrozavodsk: Izd-vo PetrGU, 2004. 176 p.

Kahovcova J., Odavic R. A simple method of the quantitative analysis of phospholipids separated by thin layer chromatography, J. Chromatogr. 1969. Vol. 40. P. 90−96.

Laakkonen H. M., Strelkov P., Lajus D. L., Väinöla R. Introgressive hybridization between the Atlantic and Pacific herrings (Clupea harengus and C. pallasii) in the north of Europe, Marine Biology. 2015. Vol. 162. P. 39−54.

Layus D. L. Laakkonen H. Strelkov P. P. Kireeva M. A. Vaynola R. Introgressive hybridization between Pacific herring and Atlantic herring and its importance for understanding the population structure of the White Sea herring, Izuchenie, racional'noe ispol'zovanie i ohrana prirodnyh resursov Belogo morya: Materialy XIII Vserossiyskoy konf. s mezhdunar. uchastiem. SPb.: ZIN RAN, 2017. P. 119−122.

Layus D. L. On the population structure of the White Sea herring, Problemy izucheniya, racional'nogo ispol'zovaniya i ohrany prirodnyh resursov Belogo morya: Materialy dokl. L., 1995. P. 25−27.

Levickiy A. P. Barabash R. D. Konovec V. M. Seasonal features of ribonuclease and α-amylase activity of saliva and salivary glands in Wistar rats, Biohimicheskaya evolyuciya. L.: Nauka, 1973. P. 192−195.

Naumov D. G. Hierarchical classification of glycoside hydrolases, Biohimiya. 2011. T. 76. Vyp. 6. P. 764−780.

Naz H., Islam A., Waheed A., Sly W. S., Ahmad F., Hassan M. I. Human β-glucuronidase: structure, function, and application in enzyme replacement therapy, Rejuvention Res. 2013. Vol. 16. No 5. P. 352−363.

Nemova N. N. Krupnova M. Yu. Murzina S. A. Activities of lysosomal proteases (cathepsins B and D) in tissues of the White Sea herring, Clupea pallasi marisalbi Berg (Clupeidae), inhabiting different bays of the White Sea, Trudy KarNC RAN. 2016. No. 6. P. 74−80.

Nemova N. N. Murzina S. A. Pekkoeva S. N. Ripatti P. O. Lipid status of larvae and adult specimens of the White Sea herring Clupea pallasii marisalbi Berg (Clupeiformes, Clupeidae), Doklady akademii nauk. 2015. T. 460. No. 4. P. 475−479.

Nemova N. N. Vysockaya R. U. Biochemical indication of fish state. M.: Nauka, 2004. 215 p.

Noorbatcha I. A., Khan A. M., Salleh H. M. Molecular dynamics studies of human β-glucuronidase, Am. J. Appl. Sci. 2010. Vol. 7. P. 823−828.

Pekkoeva S. N. Murzina S. A. Ruokolaynen T. R. Ripatti P. O. Nemova N. N. Lipid status of the White Sea herring Clupea pallasi marisalbi Berg from Dvina bay of the White Sea in autumn, Trudy KarNC RAN. 2014. No. 5. P. 86−94.

Pohilyuk V. V. Ecology and fishing of the White Sea herring: Avtoref. dip. … kand. biol. nauk. M.: VNIRO, 1992. 22 p.

Pokrovskiy A. A. Archakov A. I. Methods of separation and enzymatic identification of subcellular fractions, Sovremennye metody v biohimii. M.: Medicina, 1968. P. 5−59.

Pokrovskiy A. A. Kravchenko L. V. Tutel'yan V. A. Study of the activity of lysosomal enzymes under the action of aflatoxin and mitomycin C, Biohimiya. 1971. T. 36. Vyp. 4. P. 690−696.

Pokrovskiy A. A. Tutel'yan V. A. Lysosomes. M.: Nauka, 1976. 382 p.

Semenova A. V. Andreeva A. P. Karpov A. K. Stroganov A. N. Rubcova G. A. Afanas'ev K. I. Analysis of Microsatellite loci variability in herring (Clupea pallasii marisalbi) from the White Sea, Genetika. 2013. T. 49. No. 6. P. 751−766.

Sobko E. I. Ecological and toxicological estimation of surface water condition in the Northern Dvina estuary, Biologicheskie resursy Belogo morya i vnutrennih vodoemov Evropeyskogo Severa: Sbornik materialov IV (XXVII) mezhdunar. konf. Ch. 2. Vologda: VGPU, 2005. P. 148−150.

Stasenkova N. I. A note on the appearance of the White Sea herring (Clupea pallasii marisalbi Berg, 1923) in the south-eastern regions of the Barents Sea in 2002–2003, Problemy izucheniya, racional'nogo ispol'zovaniya i ohrany resursov Belogo morya: Materialy IX mezhdunar. konf. Petrozavodsk: Izdatel'skiy dom PIN, 2005. P. 297−300.

Strelkov P. P. Layus D. L. Vaynola R. O. In pursuit of a hybrid herring, Priroda. 2016. No. 10. P. 51−59.

The White (Beloe) Sea and their watershed under influences of climate and anthropogenic factors, Red. N. N. Filatov i A. Yu. Terzhevik. Petrozavodsk: KarNC RAN, 2007. 335 p.

Trofimov I. K. On fecundity of Pacific herring Clupea pallasii in Lakes Nerpichye, Kalygyr and Viluy (East Kamchatka), Izvestiya TINRO. 2006. T. 146. P. 158−174.

Vdovichenko E. A. Vysockaya R. U. The effect of wastewater from the Kostomuksha iron-ore mining and concentration mill on lysosomal enzyme activity in roach, Trudy KarNC RAN. 2014. No. 5. P. 167−173.

Vysockaya R. U. Nemova N. N. Fish lysosomes and lysosomal enzymes. M.: Nauka, 2008. 284 p.

Winchester B. Lysosomal metabolism of glycoproteins, Glycobiol. 2005. Vol. 15. No 6. P. 1R−15R.

Yarzhombek A. A. The way of life and behavior of commercial fish. M.: Izd-vo VNIRO, 2016. 200 p.

Displays: 1042; Downloads: 225;