Erdakov L., Moroldoev I. CYCLES IN THE LONG-TERM POPULATION DYNAMICS OF THE GREY RED-BACKED VOLE (MYODES RUFOCANUS) // Principy èkologii. 2018. № 2. P. 29‒41. DOI: 10.15393/j1.art.2018.7562


Issue № 2

Original research

pdf-version

CYCLES IN THE LONG-TERM POPULATION DYNAMICS OF THE GREY RED-BACKED VOLE (MYODES RUFOCANUS)

Erdakov
   Lev Nikolaevich
D.Sc., Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, microtus@yandex.ru
Moroldoev
   Igor Viktorovich
Ph.D., Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, igmor@list.ru
Keywords:
populations
population dynamics
grey red-backed vole
Myodes rufocanus
Summary: Among species Myodes (Clethrionomys) dwelling in Russia long-term population dynamics of grey red-backed vole (Myodes rufocanus) has been the least studied. To fill this gap we constructed the spectra of the long-term cyclicity of the population dynamics of the vole in different parts of its area and investigated them. In addition, we determined the parameters of perennial rhythms and revealed the features of cyclicity and possible geographical patterns of its changes. We also described the invariant parts of the population rhythm spectrum. Data from western (Northern Sweden, Finland and Kola Peninsula), central (Middle Urals, Western Siberia, Eastern Sayan and Baikal region) and eastern parts of the range (Hokkaido Island and Magadan Reserve) were used. When processing these data, we used spectral analysis programs. It allowed us to obtain a visual representation of the entire set of population cycles of Myodes rufocanus, and to compare the periods and powers of harmonic components. The cycles of long-term dynamics in high frequency bands are shown in all studied populations. 9–14-year cycles of population dynamics are found in many populations in middle frequencies, and on some spectra there are more than 20-years periodic components. Population rhythms of M. rufocanus are adjusted to natural cycles such as cyclical changes in climate conditions. Long-term preservation of such population cycles promotes adaptations to the changes in local climate conditions.

© Petrozavodsk State University

Reviewer: N. Dobrinskij
Received on: 15 March 2018
Published on: 25 June 2018

References

 Beleckiy E. N. Cyclicity is a fundamental property of the development and functioning of natural systems, Vіsnik Harkіvs'kogo nacіonal'nogo agrarnogo unіversitetu. Serіya Bіologіya. 2007. T. 3 (12). P. 100–116.

Bierman S. M., Fairbairn J. P., Petty S. J., Elston D. A., Tidhar D., Lambin X. Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.), Am. Nat. 2006. Vol. 167. No. 4. P. 583–590.

Bjørnstad O. N., Stenseth N. C., Saitoh T., Lingjærde O. C. Mapping the regional transition to cyclicity in Clethrionomys rufocanus: Spectral densities and functional data analysis, Res. Popul. Ecol. (Kyoto). 1998. Vol. 40. No. 1. P. 77–84.

Bjørnstad O. N., Champely S., Stenseth N. C., Saitoh T. Cyclicity and Stability of Grey-Sided Voles, Clethrionomys rufocanus, of Hokkaido: Spectral and Principal Components Analyses, Philos. Trans. Biol. Sci. 1996. Vol. 351. P. 867–875.

Boonstra R., Krebs C. J. Population dynamics of red-backed voles (Myodes) in North America, Oecologia. 2012. Vol. 168. P. 601–620.

Chernyavskiy F. B. Lazutkin A. N. Cycles of lemmings and voles in the North. Magadan: IBPS DVO RAN, 2004. 150 p.

Cornulier T., Yoccoz N. G., Bretagnolle V., Brommer J. E., Butet A., Ecke F., Elston D. A., Framstad E., Henttonen H., Hörnfeldt B., Huitu O., Imholt C., Ims R. A., Jacob J., Jędrzejewska B., Millon A., Petty S. J., Pietiäinen H., Tkadlec E., Zub K., Lambin X. Europe-wide dampening of population cycles in keystone herbivores, Science. 2013. Vol. 340. No. 6128. P. 63–66.

Druzhinin I. P. Long-term forecast and information. Novosibirsk: Nauka, 1987. 246 p.

Erdakov L. N. Moroldoev I. V. Variability of long-term cyclicity in the population dynamics of the northern red-backed vole (Myodes rutilus (Pallas, 1779)), Principy ekologii. 2017. No. 4. P. 26–36.

GNU Octave. URL: http://www.gnu.org/software/octave/ (data obrascheniya: 01.02.2018).

Gilg O., Hanski I., Sittler B. Cyclic dynamics in a simple vertebrate predator-prey community, Science. 2003. Vol. 302. No. 5646. P. 866–868.

Hanski I., Korpimaki E. Microtine rodent dynamics in Northern Europe: Parameterized models for the predator-prey interaction, Ecology. 1995. Vol. 76. No. 3. P. 840–850.

Hanski I., Turchin P., Korpimäki E., Henttonen H. Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos, Nature. 1993. Vol. 364. No. 6434. P. 232–235.

Hansson L., Henttonen H. Gradients in density variations of small rodents: the importance of latitude and snow cover, Oecologia. 1985. Vol. 67. No. 3. P. 394–402.

Hansson L., Henttonen H. Rodent dynamics as community processes, Trends Ecol. Evol. 1988. Vol. 3. No. 8. P. 195–200.

Hornfeldt B., Hipkiss T., Eklund U. Fading out of vole and predator cycles?, Proc. R. Soc. B Biol. Sci. 2005. Vol. 272. No. 1576. P. 2045–2049.

Ivanter E. V. Moiseeva E. A. To ecology of the red-backed vole (Clethrionomys rutilus Pall.) in the southwestern periphery of the species area, Trudy Karel'skogo nauchnogo centra RAN. 2015. No. 1. P. 37–47.

Kashulin P. A. Zhirov V. K. Kataev G. D. Life rhythms in the Kola North: 70 years of observations of the flora and fauna, Prirodopol'zovanie v Evro-Arkticheskom regione: opyt XX veka i perspektivy. Apatity: Izd-vo Kol'skogo NC, 2004. P. 175–183.

Kataev G. D. Long–term (1936–2015) monitoring of species composition and population dynamics of small mammals of the North taiga Lapland, Byulleten' Moskovskogo obschestva ispytateley prirody. Otd. Biol. 2016. T. 121. Vyp. 6. P. 3–17.

Korotina E. F. Long-term variations in the temperature regime of the Southern Urals. Perm': Perm. gop. un-t, 2002. 23 p.

Krivenko V. G. The concept of natural cyclics and some of the tasks of Russia's economic strategies, Agrarnaya Rossiya. 2005. No. 6. P. 41–47.

Kshnyasev I. A. Davydova Yu. A. Dynamics of density and structure of populations of red-backed voles in the southern taiga, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. Ser. Biologiya. 2005. T. 1 (9). P. 113–123.

Luk'yanova L. E. Association of sympatric small mammal species under contrasting environmental conditions, Ekologiya. 2013. No. 1. P. 65–72.

Maksimov A. A. Long-term fluctuations in the number of animals, their causes and prognosis. Novosibirsk: Nauka, 1984. 250 p.

Marpl S. L. Digital spectral analysis with applications. M.: Mir, 1990. 584 p.

Octave-Forge. URL: https://octave.sourceforge.io/ (data obrascheniya: 01.02.2018).

Okulova N. M. Kataev G. D. Long-term dynamics of the red-backed vole Clethrionomys rufocanus numbers (Microtinae, Rodentia) in different parts of its range, Zoologicheskiy zhurnal. 2003. T. 82. No. 9. P. 1095–1111.

Selås V. Cyclic population fluctuations of herbivores as an effect of cyclic seed cropping of plants: The mast depression hypothesis, Oikos. 1997. Vol. 80. No. 2. P. 257.

Stenseth N. C. Mathematical models of Microtine cycles: Models and the real world, Acta Zool. Fenn. 1985. Vol. 173. P. 7–12.

Stenseth N. C., Bjørnstad O. N., Saitoh T. A gradient from stable to cyclic populations of Clethrionomys rufocanus in Hokkaido, Japan, Proceedings. Biol. Sci. 1996. Vol. 263. No. 1374. P. 1117–1126.

Stenseth N. C., Bjornstad O. N., Falck W. Is spacing behaviour coupled with predation causing the Microtine density cycle? A synthesis of current process-oriented and pattern-oriented studies, Proc. R. Soc. B Biol. Sci. 1996. Vol. 263. No. 1376. P. 1423–1435.

Vinogradov V. N. Kel'beshekov B. K. Structural and temporal organization of the rodent community of the middle dark coniferous forests of Eastern Sayan (for example, Reserve «Stolby»), Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Biologiya. 2009. T. 4 (8). P. 5–14.

Zhigal'skiy O. A. Population cycles of bank vole Myodes (Clethrionomys) glareolus: connection with reproductive process, Izvestiya Samarskogo nauchnogo centra RAN. 2011. T. 13. No. 5. P. 185–191.

Displays: 1182; Downloads: 398;