Byazrov L., Pel L. Сomposition and ratio of the chemical elements on the surfaces different by height of reindeer lichen podetia Cladonia rangiferina // Principy èkologii. 2016. № 2. P. 27‒42. DOI: 10.15393/j1.art.2016.4983


Issue № 2

Original research

pdf-version

Сomposition and ratio of the chemical elements on the surfaces different by height of reindeer lichen podetia Cladonia rangiferina

Byazrov
   Lev
PhD, Institute of ecology & evolution RAS, 119071 Moscow Leninsky av., 33, lev.biazrov@rambler.ru
Pel
   Lyubov
Institute of ecology & evolution RAS, 119071 Moscow Leninsky av., 33, platon@sevin.ru
Keywords:
Lichens
Cladonia rangiferina
surface of podetia
μ-XRF
composition of elements
distribution of elements
vertical gradient
137Cs/90Sr
K/Ca
enrichment factor
Barguzinsky chain
Summary: In the paper the composition of 21 elements – Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Pb – was compared in the upper, central, and lower parts of podetia surfaces of the reindeer lichen Cladonia rangiferina, sampled on the slope of Barguzinsky chain. For the measurement of the elements content (%), a sample-nondestructive μ-XRF spectrometer was used. It was stated that the share (%) of the most elements, except for Cu and Zn, was highly variable. The content of the elements on the surfaces differs significantly between the studied parts of C. rangiferina podetia: mean values of the content of P, S, Cl, and K were statistically higher on the surface of the upper part of podetia, while those of Al, Si, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Co, and the total content – on the surface of the lower part of podetia. On all the parts of podetia very high value of the enrichment factor for As and Pb was established, and It was increased for P, Co, Ni, Cu, Zn.

© Petrozavodsk State University

Reviewer: A. S
Reviewer: A. Pchelkin
Received on: 21 March 2016
Published on: 19 May 2016

References

Andreev V. N. Growth of forage lichens and methods of improving it, Trudy Botanicheskogo instituta AN SSSR. Ser. 3. Geobotanika. 1954. Vyp. 9. P. 11–74.

Bruks R. R. Biological approaches to the vast fossil hunt. M.: Nedra, 1986. 311 p.

Byazrov L. G. Lichens as indicators of radioactive contamination. M.: KMK, 2005. 476 p.

Byazrov L. G. Lichens in ecological monitoring. M.: Nauchnyy mir, 2002. 336 p.

Byazrov L. G. Pel'gunova L. A. Estimation of the proportion of some elements and their distribution on a surface of thallus of lichenized fungus Xanthoria parietina (L.) Th. Fr. using sample-nondestructive μ-XRF spectrometer M4 Tornado, Principy ekologii. 2013. T. 2. No. 3. P. 37–52. URL:  http://ecopri.ru (data obrascheniya 15.05.2014).

Byazrov L. G. Pel'gunova L. A. Concentration of lead  (Pb) in thalli of lichen  Xanthoria parietina from different plots of area integrated to  Moscow city territory in 2012, Byulleten' Moskovskogo obschestva ispytateley prirody. Otd. biol. 2015a. T. 120. Vyp. 2. P. 49–57.

Byazrov L. G. Pel'gunova L. A. Micro-X-Ray fluorescence spectrometry of the chemical elements composition on the surfaces of the vegetative parts and terfases of lichenized fungi of the family  Teloschistaceae, Zhurnal prikladnoy spektroskopii. 2015b. T. 82. P. 883–887.

Byazrov L. G. Pel'gunova L. A. About accumulation of elements on surfaces of vegetative parts anf fruit bodies (apothecia) of lichenized fungi Xanthoria parietina, Sovremennaya mikologiya v Rossii: Materialy ΙΙΙ Mezhdunarodnogo mikologicheskogo foruma. M.: Nac. akad. mikologii, 2015v. T. 4. P. 334–336.

Byazrov L. G. Pel'gunova L. A. Spatial distribution of concentrations of some elements in thalli of lichen Xanthoria parietina at the area merged with the Moscow city in 2012,   Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem. 2015g. T. 25. P. 123–144.

Byazrov L. G. Pel'gunova L. A. Composition and proportion of elements on apothecia discus of crustose lichens from an experimental field of the former Semipalatinsk test site and from Kurchatov town (the Republic of Kazakhstan), Aridnye ekosistemy. 2015d. T. 21. No. 2 (63). P. 62–70.

Golubkova N. S. Byazrov L. G. The life forms of lichens and lichen synusium, Botanicheskiy zhurnal. 1989. T. 74. P. 794–805.

Grigor'ev N. A. The mean chemical composition of rocks of upper continental crust, Geohimiya.  2003. No. 7. P. 785–792.

Kovalevskiy A. L. Biogeochemistry of plants. Novosibirsk: Nauka, 1991. 294 p.

Mihaylova I. N. Kshnyasev I. A. Heavy metals content in thalli of Hypogymnia physodes lichen: sources of heterogenity, Sibirskiy ekologicheskiy zhurnal. 2012. No. 3. P. 423–428.

Mihaylova I. N. Sharunova I. P. Dynamics of heavy metal accumulation in thalli of the epiphytic lichen Hypogymnia physodes, Ekologiya. 2008. No. 5. P. 366–372.

Russian classificatory of ingredients of unsalutary substances emissions. URL: http://citysoft.mosmap.ru/ClassIng/ClassIng.htm (data obrascheniya 15.02.2016).

Saet Yu. E. Revich B. A. Yanin E. P. Smirnova R. S. Basharkevich I. L. Onischenko T. L. Pavlova L. N. Trefilova N. Ya. Achkasov A. I. Sarkisyan S. Sh. Geochemistry of an environment. M.: Nedra, 1990. 335 p.

Aastrup P., Riget F., Dietz R., Asmund G. Lead, zinc, cadmium, mercury, selenium and copper in Greenland caribou and reindeer (Rangifer tarandus),  The Science of the Total Environment. 2000. Vol. 245. P. 149–159.

Adamo P., Giordano S., Vingiani S., Cobianchi R.C., Violante P. Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy), Environmental Pollution. 2003. Vol. 122. P. 91–103.

Backor M., Kovacik J., Piovar J., Pisani T., Loppi S. Physiological aspects of cadmium and nickel toxicity in the lichens Peltigera rufescens and Cladina arbuscula subsp. mitis, Water Air Soil Pollut. 2010. Vol. 207. P. 253–262. doi: 10.1007/s11270-009-0133-6.

Bargagli R., Iosco F. P., D'Amato M. L. Zonation of trace metal accumulation in three species of epiphytic lichens belonging to the genus Parmelia, Cryptogamie, Bryologie, Lichenologie. 1987. Vol. 8. P. 331–337.

Bennett J. P. Discrimination of lichen genera and species using element concentrations, Lichenologist. 2008. Vol. 40. P. 135–151. doi: 10.1017/S0024282908007445.

Bontempi E., Bertuzzi R., Ferretti E., Zucca M., Apostoli P., Tenini S., Depero L. E. Micro X-ray fluorescence as a potential technique to monitor in-situ air pollution, Microchim Acta. 2008. Vol. 161. P. 301–305. doi: 10.1007/s00604-007-0903-z.

Courtois R., Ouellet J. P., Breton L., Gingras A., Dussault C. Effects of forest disturbance on density, space use, and mortality of woodland caribou, Ecoscience. 2007. Vol. 14. P. 491–498.

Ecoregions. World Wildlife Funds. 2001. URL: www.worldwildlife.org/ ecoregions/ ecoregions_ map. htm (data obrascheniya  23.06.2004).

Garty J. Biomonitoring atmospheric heavy metals with lichens: theory and application,   Crit. Rev. Plant Sci. 2001. Vol. 20. P. 309–371. doi: 10.1080/20013591099254.

Holm E., Rioseco J. 99Tc in the sub-arctic food chain lichen-reindeer-man, J. Environ. Radioact. 1987. Vol. 5. P. 343–357.

Kumar A., Singh N., Gaurav S. S. Bioremediation of metal contaminated sites by natural growing lichens found in hilly areas of Himachal Pradesh, Int. J. Curr. Res. 2012. Vol. 4. P. 167–168.

Loppi S., Nelli L., Ancora S., Bargagli R. Accumulation of trace elements in the peripheral and central parts of a foliose lichen thallus, Bryologist. 1997. Vol. 100. P. 251–253.

Nash T. H. Lichen Biology. 2nd ed. Cambridge: Cambridge University Press, 2008. 486 p.

Nevstrueva M. A., Ramzaev P. V., Moiseev A. A., Ibatullin M. S., Teplykh L. A. The nature of 137Cs and 90Sr transport over the lichen-reindeer-man food chain, Radioecological concentration Processes: Proceedings of International Symposium held in Stockholm 25–29 April, 1966. Oxford: Pergamon Press, 1967. P. 209–215.

Nimis P. L., Andreussi S., Pittao E. The performance of two lichen species as bioaccumulators of trace metals, The Science of the Total Environment. 2001. Vol. 275. P. 43–51.

Osyczka P., Rola K., Jankowska K. Vertical concentration gradients of heavy metals in Cladonia lichens across different parts of thalli, Ecological Indicators. 2016. Vol. 61. P. 766–776. doi: 10.1016/j.ecolind.2015.10.028.

Purvis O. W., Williamson B. J., Spiro B., Udachin V., Mikhailova I. N., Dolgopolova A. Lichen monitoring as a potential tool in environmental forensics: case study of the Cu smelter and former mining town of Karabash. Russia, Pirrie D., Ruffell A., Dawson L. A. (eds.). Environmental and criminal geoforensics. Geological society. London, 2013. Special publications No. 384. URL: http://dx.doi.org/10.1144/SP384.6  (data obrascheniya 29.02.2016).

Shao J. J., Shi J. B., Duo B., Liu C. B., Gao Y., Fu J. J., Yang R. Q., Cai Y., Jiang G. B. Trace metal profiles in mosses and lichens from the high-altitude Tibetan Plateau, RSC Advances. 2016. Vol. 6. P. 541–546. doi: 10.1039/c5ra21920e.

St. Clair S. B., St. Clair L. L., Mangelson N. F., Weber D. J. Influence of growth form on the accumulation of airborne copper by lichens, Atmos. Environ. 2002a. Vol. 36. P. 5637–5644.

St. Clair S. B., St. Clair L. L., Mangelson N. F., Weber D. J., Eggett D. L. Element accumulation patterns in foliose and fruticose lichens from rock and bark substrates in Arizona, Bryologist. 2002b. Vol. 105. P. 415–421.

Tuba Z., Csintalan Z., Nagy Z., Szente K., Takacs Z. Sampling of terricolous lichen and moss species for trace element analysis, with special reference to bioindication of air pollution, Markert B. (ed.). Environmental Sampling for Trace Analysis. VCH Verlagsgesellschaft mbH. Weinheim, 1994. P. 415–434.

Williamson B. J., Mikhailova I., Purvis O. W., Udachin V. SEM-EDX analysis in the source apportionment of particulate matter on Hypogymnia physodes lichen transplants around the Cu smelter and former mining town of Karabash, South Urals, Russia, The Science of the Total Environment. 2004. Vol. 322. P. 139–154. doi: 10.1016/j.scitotenv.2003.09.021.

Displays: 5724; Downloads: 1168;