Shtefuryak A., Mikhalap S., Vasilyeva E. Estimation of the area overgrown with helophytes in large bays of Lake Ilmen using Earth remote sensing data // Principy èkologii. 2025. № 4. P. 3‒2. DOI: 10.15393/j1.art.2025.16322


Issue № 4

Original research

pdf-version

Estimation of the area overgrown with helophytes in large bays of Lake Ilmen using Earth remote sensing data

Shtefuryak
   Alina Victorovna
Pskov Branch of the State Scientific Center of the RF VNIRO Federal State Budgetary Scientific Institution (PskovNIRO), 180007 Russia Pskov region Pskov Maxim Gorky st., 13, a.shtefuryak@pskov.vniro.ru
Mikhalap
   Sergey Gennadyevich
Pskov Branch of the State scientific Center of the RF VNIRO Federal State Budgetary Scientific Institution (PskovNIRO), 180007 Russia Pskov region Pskov Maxim Gorky st., 13, sgmikhalap@pskov.vniro.ru
Vasilyeva
   Elena Sergeevna
Novgorod Branch of the State Scientific Center of the Russian Federation VNIRO Federal State Budgetary Scientific Institution (NovogorodVNIRO), 38 Oktyabrskaya str., sq. 2, Veliky Novgorod, 173002, Novgorod region, vasileva@novgorod.vniro.ru
Keywords:
overgrowth
water levels
airo-aquatic vegetation
remote sensing of the Earth
Lake Ilmen
NDWI
NDVI
geographical information systems
Landsat
Summary: The article considers the processes of overgrowth of Lake Ilmen with airborne aquatic vegetation – gelophytes. This vegetation is one of the key components of the aquatic ecosystem, and largely determines its trophic state and bioproductivity. The study was performed based on the decoding of multispectral satellite images using the normalized vegetation index (NDVI). This allowed us to obtain objective information about the distribution of plant communities in the water area. The satellite images of Landsat satellites that passed the standard stages of radiometric and atmospheric correction were used as a source of information. Special attention was paid to three large bays of the lake – Arkadsky, Sinetsky and Rubelsky, which are most sensitive to fluctuations in water level. The constructed map charts of the spatial distribution of aerial and aquatic vegetation made it possible to identify patterns of their distribution in temporal and spatial aspects. It was established that under conditions of decreasing water levels, a steady tendency to increase the area of overgrowth is recorded, whereas at maximum levels, the degree of vegetation coverage does not exceed 2.38–4.86 %. The largest areas of overgrowth, exceeding 60 km², were recorded in July 2018, June 2021 and August 2023. For individual bays, peak values of overgrowth were determined. А statistically significant inverse relationship was also found between the overgrown area and the water level approximated by a polynomial curve,.

© Petrozavodsk State University

Received on: 27 June 2025
Published on: 10 December 2025

References

Bazarova B. B. Kuklin A. P. Dynamics of biomass and overgrowth area of aquatic vegetation of Kenon Lake (Trans-Baikal Territory) under conditions of decreasing water level, Principy ekologii. 2023. No. 2. P. 30–41. DOI: 10.15393/j1.art.2023.13724

Bondarenko L. G. Kul'ba S. N. Petrashov V. I. Smirnov S. S. Matveeva E. I. Rudakova N. A. Assessment of overgrowth by aquatic vegetation of the Chelbassky group of the Azov estuaries, Vodnye bioresursy i sreda obitaniya. 2021. T. 4, No. 4. P. 14–26. DOI: 10.47921/2619-1024_2021_4_4_14

Chebud Y., Ghinwa M. Naja, Rosanna G. Rivero, Assefa M. Melesse. Water Quality Monitoring Using Remote Sensing and an Artificial Neural Network, Water Air Soil Pollut. 2012. Vol. 223. P. 4875–4887. DOI: 10.1007/s11270-012-1243-0

Filonenko I. V. Komarova A. S. Long-term dynamics of the area overgrown with coastal and aquatic vegetation of Lke Vozhe, Principy ekologii. 2015. No. 4 (16). P. 63–72.

Gromov S. A. Kudryashov N. A. Assessment of reservoir overgrowth under anthropogenic stress using satellite data, Ekologiya i promyshlennost' Rossii. 2022. No. 10. P. 28–34.

Jaskula J., Sojka M. Assessing Spectral Indices for Detecting Vegetative Overgrowth of Reservoirs, Polish Journal of Environmental Studies. 2019. Vol. 28, No 6. P. 4199–4211. DOI: 10.15244/pjoes/98994

Keddy P. A. Wetland Ecology: Principles and Conservation. 2nd ed. Cambridge: Cambridge University Press, 2010. 497 p.

Kochetkova A. I. Bryzgalina E. S. Filippov O. V. Baranova M. S. Dynamics of overgrowth of the Volgograd reservoir (1972–2018), Principy ekologii. 2022. No. 1. P. 68–73. DOI: 10.15393/j1.art.2022.10002

Kovaleva N. O., Sharov A. I. Dynamics of Aquatic Plant Communities in lakes of the North-West of Russia under climate change, Limnology and Freshwater Biology. 2021. No 4. P. 852–854.

Kutyavina T. I. Rutman V. V. Ashihmina T. Ya. Assessment of the dynamics of overgrowth by higher aquatic plants in the water area of a eutrophic reservoir using satellite images, Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2024. T. 21, No. 1. P. 299–307. DOI: 10.21046/2070-7401-2024-21-1-299-307

Lukin A. A. Nikitina T. V. Lukina Yu. N. Tyrkin I. A. The state of the fishing part of the Lake Ilmen community under conditions of intense fishing load, Voprosy rybolovstva. 2019. T. 20, No. 1. P. 23–32.

Lv W., Liu Y., Zhang J. A framework for mapping aquatic vegetation in shallow lakes using Sentinel-2 time series and random forest classification, Ecological Indicators. 2020. Vol. 117. P. 106687.

McFeeters S. K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, International Journal of Remote Sensing. 1996. Vol. 17, No 7. P. 1425–1432.

Naumenko M. A. Karetnikov S. G. Guzivatyy V. V. Kryuchkov A. M. Pozdnyakov Sh. R. Lake Ilmen: Determination of morphometric characteristics based on a digital model, Vodnye resursy. 2015. T. 42, No. 5. P. 467. DOI: 10.7868/S0321059615050120

Panyukova E. V. Teteryuk B. Yu. Panyukov A. A. Characteristics and productivity of hydrophyte communities in small reservoirs of the European Northeast of Russia, Russian Journal of Ecosystem Ecology. 2022. T. 7, No. 1. P. 22–32. DOI: 10.21685/2500-0578-2022-1-3

Papchenkov V. G. Vegetation cover of reservoirs and watercourses of the Middle Volga region. Yaroslavl': CMP MUBiNT, 2001. 214 p.

Poddubnyy S. A. Chemeris E. V. Bobrov A. A. The influence of the water level regime on the overgrowth of the shallow waters of the Rybinsk reservoir (review), Biologiya vnutrennih vod. 2018a. No. 4. P. 38–46. DOI: 10.1134/S0320965218030142

Poddubnyy S. A. Chemeris E. V. Kutuzov A. V. Cvetkov A. I. Bobrov A. A. Dynamics of higher aquatic vegetation in protected shallow waters in connection with the water level in the Volga reach of the Rybinsk reservoir, Biologiya vnutrennih vod. 2022. No. 2. P. 136–146. DOI: 10.31857/S0320965222020085

Poddubnyy S. G. Chemeris E. V. Bobrov D. A. Hydrological factors of vegetation formation in Lake Ilmen, Vestnik SPbGU. Nauki o Zemle. 2018b. T. 63, No. 4. P. 377–390.

Raspopov I. M. Higher aquatic vegetation of the large lakes of the North-West of the USSR. L.: Nauka, 1985. 198 p.

Søndergaard M., Lauridsen T., Johansson L. Submerged macrophytes as indicators of lake ecological status, Ecological Indicators. 2017. Vol. 82. P. 1–8.

Semenov A. A. Ivanova L. P. Geoinformation mapping of the overgrowth of the coastal zone of the lakes of the Arkhangelsk region, Vestnik Severnogo (Arkticheskogo) federal'nogo universiteta. Seriya: Nauki o Zemle. 2023. No. 1. P. 23–32.

Sharov A. I. Dynamics of aquatic plant communities in lakes of the North-West of Russia under climate change, Limnology and Freshwater Biology. 2019. No 4. P. 852–854. DOI: 10.31951/2658-3518-2019-A-4-852

Shen L., Li J., Chen X. Monitoring aquatic vegetation dynamics using multi-temporal Sentinel-2 imagery: A Case Study in Lake Taihu, China, Remote Sensing. 2022. Vol. 14, No 5. P. 1103.

Stolbunov I. A. Peculiarities of distribution of juvenile fish in the coastal zone of the Rybinsk reservoir, RAN. Biologiya vnutrennih vod. 2007. No. 4. P. 55–61.

Tan X., Zhang Y., Liu C. Remote sensing of aquatic vegetation dynamics in shallow lakes, Remote Sensing of Environment. 2020. Vol. 247. P. 111–941.

Vlasov B. P. Grischenkova N. D. Sivenkov A. Yu. Suhovilo N. Yu. Kolbun D. A. Assessment of the current state and dynamics of lake overgrowth in Narochansky National Park using Earth remote sensing data, Acta Geographica Silesiana. 2019. T. 13, No. 4 (36). P. 39–55.

Wang X., Liu X., Yang X. Evaluating vegetation succession in shallow lakes using multi-sensor remote sensing data, Science of the Total Environment. 2021. Vol. 782. P. 146876. DOI: 10.1016/j.scitotenv.2021.146876

Zhang Y., Wang Y., Li X. Water level fluctuations and aquatic vegetation succession in temperate lakes, Hydrobiologia. 2021. Vol. 848. P. 1053–1067.

Zhou Y., Fang J., Wang W. Vegetation–hydrology interaction in floodplain lakes: insights from 20-year satellite observations, Hydrology and Earth System Sciences. 2023. Vol. 27, No 4. P. 1223–1241. DOI: 10.5194/hess-27-1223-2023

Displays: 75; Downloads: 1;