
| Issue № 4 |
Original research |
pdf-version |
| Gorbunov Roman Pavlovich | Institute for problem of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, 28, Daurskaya st., Kazan, 420087, Russia, xobglor@gmail.com |
|
Keywords: Einfeldia pagana morphometry Chironomidae |
Summary: Currently, there is a lack of morphometric studies of biotopic differences between the larvae of mosquitoes Chironomidae at the species level, despite extensive research in this area on other groups of invertebrates. Such studies will help determine the directions of organism variability in changing environmental conditions. This article presents the results of a study of the local morphometric variability of larvae of mosquitoes Chironomidae, the species Einfeldia pagana, depending on the depth of habitat in the water body. The relevance of the work is due to the importance of understanding the directions of morphological changes in mosquitoes Chironomidae as key components of macrozoobenthos involved in the processes of self-purification of water bodies and food chains. The aim of the study was to assess the morphometric differences of larvae Einfeldia pagana from different biotopes of Lake Komsomolskoe (Kazan). The analysis involved 26 morphometric features of larvae of age IV, including 18 parameters of the head capsule and 8 characteristics of the posterior part of the body. Measurements of morphological structures were carried out using a binocular and a light microscope using micrometer eyepiece scale. Statistical data processing was performed using methods for assessing the validity of differences, including bootstrap analysis, MANOVA, and a posterior Tukey test. The results showed significant morphometric differences between the samples: the sizes of the head capsule organs and anal gills differ. Twelve traits with statistically significant differences were identified. The obtained results can be used to develop biomonitoring methods and predict changes in species composition of Chironomidae in water bodies, as well as serve as a basis for further studies of the morphological variability of Chironomidae in various ecological conditions. © Petrozavodsk State University |
Received on: 23 June 2025 Published on: 17 December 2025 | |
Ahmetkireeva T. T. Ben'kovskaya G. V. Kitaev K. A. Dolmatova I. Yu. Housefly as an object of ecological genetics: structure of the laboratory population and resistance to stress factors, Vestnik Bashkirskogo gosudarstvennogo agrarnogo universiteta. 2014. No. 3 (31). P. 34–37.
Alieva Z. M. Samedova N. H. Yusufov A. G. Plant responses to stresses at the early stages of ontogenesis, Aridnye ekosistemy. 2013. T. 1, No. 1. C. 59–66.
Arambourou H., Beisel J. N., Branchu P., Debat V. Patterns of fluctuating asymmetry and shape variation in Chironomus riparius (Diptera, Chironomidae) exposed to nonylphenol or lead, PloS one. 2012. Vol. 7, No 11. e48844. DOI: 1371/journal.pone.0048844
Atchley W. R., Hilburn L. R. Morphometric variability in larvae of the Antarctic fly, Belgica antarctica (Diptera: Chironomidae), Canadian Journal of Zoology. 1979. Vol. 57, No 12. P. 2311–2318. DOI: 10.1139/z79-300
Clarke K. U. On the increase in linear size during growth in Locusta migratoria L., Proceedings of the Royal Entomological Society of London. 1957. Vol. 32, No 1–3. P. 35–39.
Demina I. V. Ermohin M. V. Polukonova N. V. Phenology of emergence and sex ratio in populations of heterotopic insects in the floodplain lakes of the Volga River valley, Izvestiya Saratovskogo universiteta. Novaya seriya. Ser. Himiya. Biologiya. Ekologiya. 2013. T. 13, vyp. 2. P. 89–95.
Fox J., Weisberg S. An R Companion to Applied Regression. Third edition. Sage, Thousand Oaks CA, 2019. URL: https://www.john-fox.ca/Companion/
Gallardo‐Gómez D., Richardson R., Dwan K. Standardized mean differences in meta‐analysis: A tutorial, Cochrane Evidence Synthesis and Methods. 2024. Vol. 2, No 3. e12047. DOI: 10.1002/cesm.12047
Grebenjuk L. P., Tomilina I. I. Morphological deformations of hard-chitinized mouthpart structures in larvae of the genus Chironomus (Diptera, Chironomidae) as the index of organic pollution in freshwater ecosystems, Inland water biology. 2014. Vol. 7. 273. DOI: 10.1134/S1995082914030092
Hildebrandt J. P., Wiesenthal A. A., Müller C. Phenotypic plasticity in animals exposed to osmotic stress–is it always adaptive?, BioEssays. 2018. Vol. 40, No 11. 1800069. DOI: 10.1002/bies.201800069
Kamburska L., Zaupa S., Boggero A. Size-pattern and larval-length–mass relationships for the most common Chironomid taxa in the deep subalpine Lake Maggiore, Water. 2023. Vol. 15, No 15. 2730. DOI: 3390/w15152730
Kefford B. J., Reddy-Lopata K., Clay C., Hagen T., Parkanyi O., Nugegoda D. Size of anal papillae in chironomids: Does it indicate their salinity stress?, Limnologica. 2011. Vol. 41, No 2. P. 96–106. DOI: 10.1016/j.limno.2010.09.004
Kiknadze I. I. Shilova A. I. Kerkis I. E. Shobanov N. A. Zelencov N. I. Grebenyuk L. P. Istomina A. G. Prasolov V. A. Karyotypes and morphology of Chironomid larvae of the tribe Chironomini: Atlas. Novosibirsk: Nauka. Sib. otd-nie, 1991. 114 p.
Learner M. A., Potter D. W. B. The seasonal periodicity of emergence of insects from two ponds in Hertfordshire, England, with special reference to the Chironomidae (Diptera: Nematocera), Hydrobiologia. 1974. Vol. 44. P. 495–510.
Lenth R. _emmeans: Estimated Marginal Means, aka Least-Squares Means. 2025. DOI: 10.32614/CRAN.package.emmeans, R package version 1.11.2-8. URL: https://CRAN.R-project.org/package=emmeans
McCauley V. J. E. Instar differentiation in larval Chironomidae (Diptera), The Canadian Entomologist. 1974. Vol. 106, No 2. P. 179–200. DOI: 10.4039/Ent106179-2
Melnik M. Principles of applied statistics. M.: Energoatomizdat, 1983. 416 p.
Montaño-Campaz M. L., Gomes-Dias L., Toro Restrepo B. E., García-Merchán V. H. Incidence of deformities and variation in shape of mentum and wing of Chironomus columbiensis (Diptera, Chironomidae) as tools to assess aquatic contamination, PloS one. 2019. Vol. 14, No 1. e0210348. DOI: 1371/journal.pone.0210348
Moubayed J., Langton P. H. On the genus Einfeldia Kieffer from France. Description of aberlencii sp. n. from French Guiana with emendation of four recently described species from continental France (Diptera, Chironomidae), Ephemera. 2025. Vol. 26. P. 1–9.
Nguyen H., Donini A. Larvae of the midge Chironomus riparius possess two distinct mechanisms for ionoregulation in response to ion-poor conditions, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2010. Vol. 299, No 3. P. R762–773. DOI: 10.1152/ajpregu.00745.2009
Pankratova V. Ya. Larvae and pupae of mosquitoes from the subfamilies Podonominae and Tanypodinae of the USSR fauna (Diptera, Chironomidae, Tendipedidae). L.: Nauka. Leningr. otd-nie, 1977. 154 p.
R Core Team. _R: A Language and Environment for Statistical Computing_. R. Foundation for Statistical Computing. Vienna, Austria, 2025. URL: https://www.R-project.org/
Rossaro B., Marziali L., Boggero A. Response of chironomids to key environmental factors: perspective for biomonitoring, Insects. 2022. Vol. 13, No 10. 911. DOI: 3390/insects13100911
Serra S. R., Graca M. A., Doledec S., Feio M. J. Discriminating permanent from temporary rivers with traits of chironomid genera, Annales de Limnologie-International Journal of Limnology. 2017. Vol. 53. P. 161–174.
Sibly R. M., Calow P. A life-cycle theory of responses to stress, Biological Journal of the Linnean Society. 1989. Vol. 37, No 1-2. P. 101–116. DOI: 10.1111/j.1095-8312.1989.tb02007.x
Tokinova R. P. Lyubarskiy D. S. Butorova L. E. Features of the structure of macrophites and associated fauna in Komsomol'skoye lake (Kazan) in winter, Ozera Evrazii: problemy i puti ih resheniya: Materialy II Mezhdunar. konf., Pod red. R. R. Shagidullina, N. N. Filatova, Sh. R. Pozdnyakova, D. V. Ivanova. Kazan': Izd-vo AN RT, 2019. Ch. 2. P. 341–345.
URL: https://www.scirp.org/reference/referencespapers?referenceid=3500252
Wickham H., Averick M., Bryan J., Chang W., McGowan L. D., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen T. L., Miller E., Bache S. M., Müller K., Ooms J., Robinson D., Seidel D. P., Spinu V., Takahashi K., Vaughan D., Wilke C., Woo K., Yutani H. Welcome to the tidyverse, Journal of Open Source Software. 2019. Vol. 4, No 43. 1686. DOI: 10.21105/joss.01686.
Wiederholm T. Chironomidae of the Holarctic Region. Part 1. Larvae, Entomologica Scandinavica Supplement. 1983. Vol. 19. P. 149–291.
Zaharov V. M. Animal asymmetry (population-phenogenetic approach). M.: Nauka, 1987. 216 p.