Cherlin V. Adaptations of different ectothermic animals to global climate changes // Principy èkologii. 2025. № 3. P. 3‒2. DOI: 10.15393/j1.art.2025.16282


Issue № 3

Analytical review

pdf-version

Adaptations of different ectothermic animals to global climate changes

Cherlin
   Vladimir Alexandrovich
DSc, Dagestan state univeersity, 43-a M.Gadzhiev St., Makhachkala 367000 Republik of Dagestan, cherlin51@mail.ru
Keywords:
invertebrates
vertebrates
reptiles
thermal biology
thermal resistance
еctothermic animals
global warming
Summary: The article analyzes data on the thermobiological characteristics of activity and thermal endurance in invertebrates and vertebrates, the relationship between these groups of indicators and their possible significance in adapting to global climate changes. In animals that poorly regulate body temperature (many invertebrates, especially inactive and sedentary ones, and lower chordates), the thermobiological characteristics of activity and the thermoresistance of cells, tissues, or the whole organisms are very closely related to the environmental temperature conditions. Such animals have no alternative to find themselves in conditions with changing temperatures. And in order to survive, they adapt to them by biochemical or physiological means. In free-moving animals, which actively regulate body temperature through behavioral reactions, and so more or less successfully keep it within physiologically necessary limits (many insects, vertebrates – some amphibians, all reptiles and warm-blooded animals), the thermobiological characteristics of activity are much weaker related to the thermal characteristics of the environment, because behavioral regulatory mechanisms neutralize the interaction between them. Due to various mechanisms of modification of the spatiotemporal structure of activity, these animals can effectively maintain the fairly narrow parameters of thermal homeostasis in a very wide range of external temperature conditions. In such animals, even global climate changes can have an ambiguous effect on their adaptive capabilities. Thus, the problem of the influence of global warming has no simple solution, since many physiological properties and reactions of various organisms related to temperature do not always carry an unambiguous adaptive load. To solve these problems, we can formulate some important questions. How can natural selection eliminate less thermophilic reptile species during the climate warming, if they neutralize the effect of thermal conditions on the body temperature by a variety of behavioral reactions, effectively maintaining the characteristics of thermal homeostasis in a wide range of external conditions? Do such seemingly important properties as thermobiological activity characteristics and thermal resistance have any significance in adapting to climate warming for animals with well-developed behavioral thermoregulation? And if it is important to them, for what reasons, and how it can work? The answers to these questions have yet to be found.

© Petrozavodsk State University

Reviewer: K. Lotiev
Reviewer: V. A. Ilyukha
Received on: 22 June 2025
Published on: 29 September 2025

References

Cherlin V.A., 1989 b. Vozrastnaya izmenchivost' termobiologicheskih pokazateley u nekotoryh yascheric, Izvestiya Akademii nauk Turkmenskoy SSR, seriya biologicheskih nauk. No. 1. P. 35–38.

Andronikov V.B. Porogovaya temperatura teplovogo povrezhdeniya muskulatury u lyagushek i vidospecifichnost' kletochno-tkanevoy termorezistentnosti, Zool. zh. 1988. T. 67. Vyp. 8. P. 1205–1213.

Bartholomew G.F., Bernd H., 1978. Endothermy in African Dung Beetles During Flight, Ball Making, and Ball Rolling, J. Exp. Biol. Vol. 73. Iss. 1. P. 65–83.

Battaglia P., Andaloro F., Consoli P., Esposito V., Malara D., Musolino S., Peda C., Romeo T., 2013. Feeding habits of the Atlantic bluefin tuna, Thunnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of Messina), Helgol. Mar. Res. Vol. 67. P. 97–107.

Belyaev G.M. Fiziologicheskie razlichiya mezhdu predstavitelyami odnih i teh zhe vidov vodnyh bespozvonochnyh v ekologicheski razlichnyh vodoemah., III ekologicheskaya konferenciya. 1954. Tezisy dokladov. Ch. 2. Kiev.

Cabezas-Cartes F., Fernández J.B., Duran F., Kubisch E.L., 2019. Potential benefits from global warming to the thermal biology and locomotor performance of an endangered Patagonian lizard, PeerJ. No:7:e7437.

Carey F.G., Kanwisher J.W., Brazier O., Gabrielson G., Casey J.G,, Pratt H.L.Jr, 1982. Temperature and activities of a white shark, Carcharodon carcharias, Copeia. No. 2. P. 254–260.

Cech J.J., Laurs R.M., Graham J.B., 1984. Temperature-induced changes in blood gas equilibria in the albacore, Thunnus alalunga, a warm-bodied tuna, J. exp. biol. Vol. 109. No. 1. P. 21–34.

Cellarius A.Yu., Cherlin V.A., Men'shikov Yu.G., 1991. Predvaritel'noe soobschenie o rabotah po izucheniyu biologii Varanus griseus (Reptilia, Varanidae) v Sredney Azii, Gerpetologicheskie issledovaniya. Leningrad: LISP. No. 1. P. 61–103.

Cherlin V.A., 1983. Sposoby adaptacii presmykayuschihsya k temperaturnym usloviyam sredy, Zhurnal obschey biologii. T. 44. No. 6. P. 753–764.

Cherlin V.A., 1988. K termobiologii serogo gekkona (Cyrtopodion russowi), polosatoy yaschurki (Eremias scripta) i stepnoy agamy (Trapelus sanguinolentus) v Vostochnyh Kara­kumah, Izvestiya Akademii nauk Turkmenskoy SSR, seriya biologicheskih nauk. No. 5. P. 36–43.

Cherlin V.A., 1989 a Populyacionnye aspekty termal'nyh adaptaciy u presmykayuschihsya, Problemy populyacionnoy ekologii zemnovodnyh i presmykayuschihsya. Moskva. P. 135–172 (Itogi nauki i tehniki. VINITI. Seriya Zoologiya pozvonochnyh, t. 17).

Cherlin V.A., 2012. Termobiologiya reptiliy. Obschaya koncepciya. SPb.: Izdatel'stvo «Russko-Baltiyskiy informacionnyy centr “BLIC”». 362 p.

Cherlin V.A., 2013a. Sravnenie termobiologii scinkovogo (Teratoscincus scincus scincus) i grebnepalogo (Crossobamon eversmanni) gekkonov, Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. T. 18. Vyp. 6. P. 3110–3112.

Cherlin V.A., 2013b. Sravnenie termobiologii treh vidov zmey Sredney Azii (Echis multisquamatus, Spalerosophis diadema, Psammophis lineolatum), Praci Ukraïns'kogo gerpetologichnogo tovaristva. No. 4. P. 184–189.

Cherlin V.A., 2014. Reptilii: temperatura i ekologiya. Saarbrücken, Lambert Academic Publishing. 442 p.

Cherlin V.A., 2015. Teplovye adaptacii reptiliy i mehanizmy ih formirovaniya, Principy ekologii. T. 4. No. 1. P. 17–76.

Cherlin V.A., 2019. Termobiologicheskiy mehanizm prostranstvenno-vremennogo razobscheniya aktivnosti sredney, Eremias intermedia, i lineychatoy, E. lineolata, yaschurok (Reptilia, Lacertidae) v Kyzylkumah, Izvestiya vysshih uchebnyh zavedeniy. Povolzhskiy region. Estestvennye nauki. No. 1. P. 162–174.

Cherlin V.A., 2021. Termobiologiya i ekologiya chetyreh vidov agamovyh yascheric v Sredney Azii i na Severnom Kavkaze, Gornye ekosistemy i ih komponenty. Materialy VIII Vserossiyskoy konferencii s mezhdunarodnym uchastiem, posvyaschennoy Godu nauki i tehnologiy v Rossiyskoy Federacii. 10-25 sentyabrya 2021. Nal'chik. P. 124–125.

Cherlin V.A., 2023. Preadaptivnost' nesokratitel'nogo termogeneza v evolyucii teplokrovnosti u pozvonochnyh, Uspehi sovremennoy biologii. T. 143. No. 4. P. 375–392.

Cherlin V.A., 2025. Fenomen psilotermii i ego znachenie v biologii pozvonochnyh zhivotnyh, Principy ekologii (v pechati).

Cherlin V.A., Cellarius A.Yu., 1981. Zavisimost' povedeniya peschanoy efy, Echis multisquamatus Cherlin 1981 ot temperaturnyh usloviy v Yuzhnoy Turkmenii, Fauna i ekologiya amfibiy i reptiliy palearkticheskoy Azii. L.: Nauka. P. 96–108 (Trudy Zoologicheskogo Instituta AN SSSR, t. 101).

Cherlin V.A., Cellarius A.Yu., Gromov A.V., 1983. K temperaturnoy biologii scinkovogo gekkona (Teratoscincus scincus) v Karakumah, Ekologiya. No. 2. P. 84–87.

Cherlin V.A., Chikin Yu.A., 1991. K termobiologii yascheric gornyh rayonov Uzbekistana, Gerpetologicheskie issledovaniya. Leningrad: LISP. No. 1. P. 119–129.

Cherlin V.A., Muzychenko I.V., 1983. Termobiologiya i ekologiya setchatoy yaschurki (Eremias grammica), ushastoy (Phrynocephalus mystaceus) i peschanoy (Ph. interscapularis) kruglogolovok letom v Karakumah, Zoologicheskiy zhurnal. T. 62. No. 6. P. 897–908.

Cherlin V.A., Muzychenko I.V., 1984. K metodike opredeleniya kriticheskogo maksimuma temperatury tela nekotoryh sredneaziatskih yascheric, Izvestiya Akademii nauk Turkmenskoy SSR, seriya biologicheskih nauk. No. 5. P. 73–76.

Cherlin V.A., Muzychenko I.V., 1988. Sezonnaya izmenchivost' termobiologicheskih pokazateley nekotoryh aridnyh yascheric, Zoologicheskiy zhurnal. T. 67. No. 3.P. 406–416.

Cherlin V.A., Shepilov P.A. Termobiologiya sredneaziatskoy gyurzy (Macrovipera lebetina turanica) hrebta Nuratau i gyurzy Chernova (Macrovipera lebetina černovi) zapadnyh Kyzylkumov, Zoologicheskiy zhurnal. 2014. T. 93, No.2. Str. 242–247.

Compagno L.J.V., 2002. Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). Volume 2. Food and Agriculture Organization of the United Nations. Rome. P. 109–115.

Domínguez–Guerrero S.F., Muñoz M.M., Pasten–Téllez D.de J., Arenas–Moreno D.M., Rodríguez–Miranda L.A., Manríquez–Morán N.L., Méndez–de la Cruz F.R., 2019. Interactions between thermoregulatory behavior and physiological acclimatization in a wild lizard population, J. Therm. Biol. Vol. 79. P. 135–143.

Goldman K.J., 1997. Regulation of body temperature in the white shark, Carcharodon carcharias, J. Comp. Physiol. B. Vol. 167. P. 423–429.

Goldman K.J., Anderson S.D., McCosker J.E., Klimley A.P., 1996. Temperature, swimming depth, and movements of a whiteshark at the South Farallon Islands, California. In: Klimley A.P., Ainley D.G. (eds). Great white sharks: ecology and behavior, San Diego, CA: Academic Press. P. 111–120.

Golovanov V.K., 2012. Povedencheskaya termoregulyaciya presnovodnyh ryb. Ekologo-fiziologicheskie i biohimicheskie mehanizmy, Fiziologicheskie, biohimicheskie i molekulyarno-geneticheskie mehanizmy adaptaciy gidrobiontov. Materialy Vserossiyskoy konferencii s mezhdunarodnym uchastiem (Borok, 22-27 sentyabrya 2012 g.). Kostroma: «Kostromskoy pechatnyy dom». P. 95–97.

Golovanov V.K., 2013. Ekologo-fiziologicheskie zakonomernosti raspredeleniya i povedeniya presnovodnyh ryb v termogradientnyh usloviyah, Voprosy ihtiologii. T. 53. No. 3. P. 286–314.

Holland K.N., Sibert J.R., 1994. Physiological thermoregulation in bigeye tuna, Thunnus dews, Environmental Biology of Fishes. Vol. 40. P. 319–327.

Kalinnikova T.B., Shagidullin R.R., Kolsanova R.R., Belova E.B., Gaynutdinov T.M., Gaynutdinov M.H. Evolyuciya tolerantnosti organizmov poykilotermnyh zhivotnyh k vysokoy temperature sredy, Rossiyskiy zhurnal prikladnoy ekologii. 2018. No. 3. P. 38–52.

Karol' I.L., Kiselev A.A., 2013. Paradoksy klimata: Lednikovyy period ili obzhigayuschiy znoy? M.: AST-Presp. 282 p.

Kerr R.A., 2008. Mother Nature cools the greenhouse, but hotter times still lie ahead, Science. V.230. P.595.

Kolsanova R.R., Kalinnikova T.B., Belova E.B., Gaynutdinov T.M., Gaynutdinov M.H., 2014. O roli holinergicheskih sinapsov v termotolerantnosti pochvennyh nematod Caenorhabditis elegans i Caenorhabditis briggsae, Vestnik OGU. No.9 (170). P. 135-139.

Korosov A.V., 2010. Ekologiya obyknovennoy gadyuki (Vipera berus L.) na Severe. Petrozavodsk: Izd-vo PetrGU. 264 p.

Korosov A.V., Ganyushina N.D., 2020. Metody ocenki parametrov termoregulyacii reptiliy (na primere obyknovennoy gadyuki, Vipera berus L.), Principy ekologii. No. 4. P. 88–103.

Korosov A.V., Litvinov N.A., Ganyushina N.D., Chetanov N.A., 2021. Parametry termoregulyacii obyknovennoy gadyuki (Vipera berus L.) v raznyh chastyah areala, Principy ekologii. No. 3. P. 54–63.

Kubisch E.L., Fernández J.B., Ibargüengoytía N.R., 2016. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina, J Comp. Physiol. B. Vol. 186. No 2. P. 243-53.

Kutenkov A.P., 2009. Ekologiya travyanoy lyagushki (Rana temporaria L., 1758) na Severo-zapade Rossii. Petrozavodsk: Izd-vo PetrGU. 140 p.

Kutenkov A.P., Cellarius N.B., 1988. Osobennosti aktivnosti travyanoy lyagushki (Rana temporaria) v Karelii, Zool. zhurn. T. 67. Vyp. 7. P. 1038–1045.

Lambrinos J.G., Kleier C.C., 2003. Thermoregulation of juvenile Andean toads (Bufo spinulosus) at 4300 m, Journal of Thermal Biology. Vol. 28. No. 1. P. 15–19.

Li H, Zhu J, Cheng Y, Zhuo F, Liu Y, Huang J, Taylor B, Luke B, Wang M, González-Moreno P, 2023. Daily activity patterns and body temperature of the Oriental migratory locust, Locusta migratoria manilensis (Meyen), in natural habitat, Front. Physiol. 14:1110998. doi: 10.3389/fphys.2023.1110998

Liberman P.P., Pokrovskaya I.V., 1943. Materialy po ekologii prytkoy yaschericy, Zool. zh. T. 22. No. 2. P. 247–256.

McCosker J.E., 1987. The white shark, Carcharodon carcharias, has a warm stomach, Copeia. No. 1. P. 195–197.

Myshkin I.Yu. Mehanizmy regulyacii processov zhiznedeyatel'nosti. Yaroslavl': YarGU. 2016. 48 p.

Nakamura I., Matsumoto R., Sato K., 2020. Body temperature stability in the whale shark, the world's largest fish, J. Exp. Biol. Vol. 223. No 11: jeb210286.

Pearson O.P., Brandford D.F., 1976. Thermoregulation of lizards and toad at high altitudes in Peru, Copeia. No. 1. P. 155–170.

Pianka E. Evolyucionnaya ekologiya. M.: Mir, 1981. 400 c.

Prokosch, J., Bernitz, Z., Bernitz, H., et al., 2019. Are animals shrinking due to climate change? Temperature-mediated selection on body mass in mountain wagtails, Oecologia. No 189. P. 841–849.

Prosser L. Temperatura, Sravnitel'naya fiziologiya zhivotnyh, Pod red. L. Prossera. M.: Mir, 1977. T. 2. P. 84–209.

Rubakina V.A., Kubryakov A.A., Stanichnyy P.V., 2019. Sezonnyy i sutochnyy hod temperatury vod Chernogo morya po dannym termoprofiliruyuschih dreyfuyuschih buev, Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. T. 16. No. 5. P. 268–281.

Saint-Girons H. Thermoregulation in reptiles with special reference to the tuatara and its ecophysiology, Tuatara. 1980. V. 24. N 2. P. 59–80.

Sapunov V.B., 2010. Gryadet global'noe poholodanie. SPb.: AST, Astrel'. 96 p.

Senanayake U.I., Siriwardana S., Weerakoon D.K., Wijesinghe M.R., 2019. Combating Extreme Tropical Seasonality: Use of Rock Crevices by the Critically Endangered Frog Nannophrys marmorata in Sri Lanka, Herpetological Conservation and Biology. 2019. Vol. 14. No 1. P. 261–268.

Sepulveda C.A., Dickson K.A., Bernal D., Graham J.B., 2008. Elevated red myotomal muscle temperatures in the most basal tuna species, Allothunnus fallai, J. Fish Biol. Vol. 73. Iss. 1. P. 241–249.

Serhenov M.E., Muradova A.O., Kichikulova M.T., 2024. Global'noe poholodanie: vyzovy i vozmozhnosti. Buduschee global'nogo potepleniya, Vestnik nauki. T. 4. No.5 (74). P. 2004–2007.

Shmidt-Niel'sen K. Fiziologiya zhivotnyh. Prisposoblenie i sreda. M.: Mir, 1982. T. 1. 416 p.

Sinsch U. Behavioural thermoregulation of the Andean toad (Bufo spinulosus) at high altitudes, Oecologia. 1989. Vol. 80. No 1. P. 32–38.

Strel'nikov I.D. Deystvie solnechnoy radiacii i mikroklimata na temperaturu tela i povedenie lichinok aziatskoy saranchi Locusta migratoria L., Tr. ZIN AN SSSR. 1935. T. 2. No. 4. P. 637–734.

Strel'nikov I.D. Deystvie solnechnoy radiacii na temperaturu tela nekotoryh litoral'nyh zhivotnyh, Doklady Akademii Nauk SSSR. 1945. T. 47. No. 8. C. 626–628.

Teo S.L.H., Boustany A., Dewar H., Stokesbury M.J.W., Weng K.C., Beemer S., Seitz A. C., Farwell C.J., Prince E.D., Block B.A., 2007. Annual migrations, diving behavior, and thermal biology of Atlantic bluefin tuna, Thunnus thynnus, on their Gulf of Mexico breeding grounds, Mar. Biol. Vol. 151. P.1–18.

Tricas T.C., McCosker J.E., 1984. Predatory behavior of the whiteshark (Carcharodon carcharias), with notes on its biology, Proc. Calif. Acad. Sci. Vol. 43. P. 221–238.

Ushakov B.P. Teploustoychivost' muskulatury midiy i piyavok v svyazi s usloviyami suschestvovaniya vida, Zool. zh. 1955. T. 34. Vyp. 3. P. 578–588.

Ushakov B.P. Teploustoychivost' somaticheskoy muskulatury zemnovodnyh v svyazi s usloviyami suschestvovaniya vida, Zool. zh. 1956. T. 35. Vyp. 7. P. 953-964.

Ushakov B.P. Teploustoychivost' tkaney – vidovoy priznak poykilotermnyh zhivotnyh, Zool. zh. 1959. T. 38. Vyp. 9. P. 1292–1302.

Ushakov B.P., Darevskiy I.P. Sravnenie teploustoychivosti myshechnyh volokon i otnosheniya k temperature u dvuh simpatricheskih vidov polupustynnyh yascheric, Doklady Akademii nauk SSSR. 1959. T. 128. No. 4. P. 833–835.

Veterinarnyy enciklopedicheskiy slovar'. Gl. red. V. P. Shishkov. M.: Sovetskaya Enciklopediya. 1981. 640 p.

Wild K.H., Huey R.B., Pianka E.R., Clusella-Trullas S., Gilbert A.L., Miles D.B., Kearney M.R., 2025. Climate change and the cost-of-living squeeze in desert lizards, Science. Vol. 387. Is. 6731. P. 303–309.

Wood R., 2008. Natural ups and downs, Nature. V. 453. P. 43–44.

Yumashev I.Yu. Termobiologicheskie pokazateli obyknovennoy gadyuki v basseyne Verhney Volgi, Pervaya konferenciya gerpetologov Povolzh'ya: Tez. dokl. Tol'yatti, 1995. P. 63–65.

Displays: 92; Downloads: 9;