Syrchina N., Pilip L. Strategy of using protective forest stands to effectively disperse odors from livestock complexes (review) // Principy èkologii. 2025. № 4. P. 4‒18. DOI: 10.15393/j1.art.2025.15722


Issue № 4

Analytical review

pdf-version

Strategy of using protective forest stands to effectively disperse odors from livestock complexes (review)

Syrchina
   Nadezhda Viktorovna
PhD, Federal State Budgetary Educational Institution of Higher Education Vyatka State University, 36, Moskovskaya St., Kirov, Kirov region, Russia, nvms1956@mail.ru
Pilip
   Larisa Valentinovna
PhD, Federal State Budgetary Educational Institution of Higher Education Vyatka State Agrotechnological University, 133, Oktyabrsky Ave., Kirov, Kirov region, Russia, pilip_larisa@mail.ru
Keywords:
protective forest stands
livestock farms
odor
odor pollution control
odor dispersion
an odor control strategy
Summary: Odor pollution of the environment is one of the most pressing air quality issues in intensive stock farming. To date, there are several strategies for combating unpleasant odors. To search for information, we used the following services: eLIBRARY, CyberLeninka, Scopus, Google Scholar, Web of Science, Google Academy, and Scholar.ru. The linguistic modeling of the subject field was based on keywords. Effective management of odors from livestock complexes can be achieved through the introduction of technology for the use of protective forest stands, i.e. artificially created arrays of trees and shrubs designed to protect agricultural lands and infrastructure from adverse effects, including odor load. In this case, protective forest stands act as barriers that reduce the speed and change the direction of the wind, which leads to effective dispersion of the odor. This occurs through physical interception and capture of gases and aerosol particles, dilution of concentrated odor from the downwind side, deposition of dust and other aerosols on the ground due to a decrease in wind speed, biological absorption (assimilation) of chemical components of the smell after interception. This helps to improve the aesthetic perception of livestock facilities and rural landscapes. The design of protective forest stands should correspond to the soil and climatic conditions of the region and the availability of planting material. In addition, it has a number of features emphasized in this work in relation to livestock facilities.

© Petrozavodsk State University

Reviewer: E. Koval
Reviewer: M. Sazanova
Received on: 07 February 2025
Published on: 27 December 2025

References

 Ajami A., Sanjay B. Shah, Lingjuan Wang-Li, Praveen Kolar. Windbreak Wall-Vegetative Strip System to Reduce Air Emissions from Mechanically Ventilated Livestock Barns: Part 2. Swine House Evaluation, Water, Air, & Soil Pollution. 2019. Vol. 230. P. 1–28. DOI: 1007/s11270-019-4335-2

Asman W. A. H., Sutton M. A., Schjorring J. K. Ammonia: emission, atmospheric transport and deposition, New Phytologist. 1998. Vol. 139, No. 1. R. 27–48.

Belyuchenko I. S. Forest belts and their functioning in agrarian landscape, Ekologicheskiy Vestnik Severnogo Kavkaza. 2020. T. 16, No. 2. P. 30–36.

Benefits and Costs of the Clean Air Act 1990–2020. Report Documents and Graphics. EPA. Environmental Protection Agency, 2011. URL: https://hepg.hks.harvard.edu/publications/benefits-and-costs-clean-air-act-1990-2020-report-documents-and-graphics (data obrascheniya: 05.02.2025).

Bist R. B., Subedi S., Chai L., Yang X. Ammonia emissions, impacts, and mitigation strategies for poultry production: A critical review, Journal of Environmental Management. 2023. No. 328. Article No. 116919.‏ DOI: 10.1016/j.jenvman.2022.116919

Bogdanova V. V. The problems of pig farming that must be taken into account when designing and building pigsties, Vestnik nauki. 2023. T. 4, No. 1 (58). P. 259–263.

Brazesh B., Mousavi S. M., Zarei M., Ghaedi M., Bahrani S., Hashemi S. A. Biosorption, Interface Science and Technology. Elsevier. 2021. Vol. 33. P. 587–628. DOI: 10.1016/B978-0-12-818805-7.00003-5

Cao T., Zheng Y., Dong N. Control of odor emissions from livestock farms: A review, Environmental Research. 2023. Vol. 225. Article No. 115545. DOI: 10.1016/j.envres.2023.115545

Chang X., Sun L., Yu X., Liu Z., Jia G., Wang Y., Zhu X. Windbreak efficiency in controlling wind erosion and particulate matter concentrations from farmlands, Agriculture, Ecosystems & Environment. 2021. Vol. 308. Article No. 107269. DOI: 10.1016/j.agee.2020.107269

Chernyshov M. P. Requirements for artificial reforestation in protective forests of the forest-steppe zone of the European part of the Russian Federation, Aktual'nye napravleniya nauchnyh issledovaniy XXI veka: teoriya i praktika. 2015. T. 3, No. 2–1 (13–1). P. 153–157.

Decree of the Government of the Russian Federation dated October 20, 2023 No. 2909-r MOSCOW. URL: http://static.government.ru/media/files/rlxcxWobSKewpJxZ7mdor2MXyLlukkdA.pdf (data obrascheniya: 05.02.2025).

Elkiey T., Ormrod D. P., Marie B. Foliar sorption of sulfur dioxide, nitrogen dioxide, and ozone by ornamental plants atmospheric pollutants, Horticult Science. 1982. Vol. 17, No. 3. R. 358–360. DOI: 21273/HORTSCI.17.3.358

Environmental pollution from farm animal waste, Tadqiqotlar. 2024. T. 30, No. 1. P. 182–187.

Gadd G. M. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology. 2009. Vol. 84, No. 1. P. 13–28. DOI: 10.1002/jctb.1999

Goshin M. E. Budarina O. V. Ingel' F. I. Odors in ambient air: an analysis of the relationship with health status and quality of life of the adult population of a city with a developed food industry, Gigiena i sanitariya. 2020. No. 99 (12). P. 1339. DOI: 10.47470/0016-9900-2020-99-12-1339-1345

Grala R. K., Tyndall J. C., Mize C. W. Impact of field windbreaks on visual appearance of agricultural lands, Agroforestry systems. 2010. Vol. 80. P. 411–422. DOI: 10.1007/s10457-010-9335-6

Hamilton D. W., Ogejo J. A. Strategies to control farmstead odors, Division of Agricultural Sciences and Natural Resources, Oklahoma State University. 2017. URL: https://extension,okstate,edu/fact-sheets/print-publications/bae/strategies-to-control-farmstead-odors-bae-2905.pdf (data obrascheniya: 12.09.2024).

Hanajima D., Kuroda K., Morishita K. et al. Key odor components responsible for the impact on olfactory sense during swine feces composting, Bioresource technology. 2010. Vol. 101, No. 7. R. 2306–2310. DOI: 10.1016/j.biortech.2009.11.026

Hernandez G., Trabue S., Sauer T., Pfeiffer R., Tyndall J. Odor mitigation with tree buffers: Swine production case study, Agriculture, ecosystems & environment. 2012. Vol. P. 154–163. DOI: 10.1016/j.agee.2011.12.002 :

Ivanova S. V. Skovronskaya S. A. Goshin M. E. Budarina O. V. Kulikova A. Z. The influence of odor on physiological, emotional and cognitive aspects of human health in experimental conditions (literature review), Gigiena i sanitariya. 2020. No. 99 (12). P. 1370. DOI: 10.47470/0016-9900-2020-99-12-1370-1375

Jacobson L. D., Guo H., Schmidt D. R., Nicolai R. E. Influence of weather condition on field evaluation of odor dispersions from animal production sites, Livestock environment VI: Proceedings of the 6th International Symposium. Louisville, Kentucky, USA, 2001. R. 679–686.

Jayathilakan K., Sultana K., Radhakrishna K., Bawa A. S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review, Journal of food science and technology. 2012. Vol. 49, No. 3. P. 278–293. DOI: 10.1007/s13197-011-0290-7

Kliebenstein J. B., Loromer J., Larson B. Odor Control Methods Used by Iowa Pork Producers. Iowa State University. Department of Economics, 2003. URL: https://www.researchgate.net/profile/James-Kliebenstein/publication/5130904_ODOR_CONTROL_METHODS_USED_BY_IOWA_PORK_PRODUCERS/links/0912f5123aba20e4e8000000/ODOR-CONTROL-METHODS-USED-BY-IOWA-PORK-PRODUCERS.pdf (data obrascheniya: 12.09.2024).

Kolevatyh E. P. Pilip L. V. Syrchina N. V. Transformation of the microbiota of animal waste under the influence of chemical reagents for odor elimination, Teoreticheskaya i prikladnaya ekologiya. 2022. No. 4. P. 159–165. DOI: 10.25750/1995-4301-2022-4-159-165

Kostic B., Stevanovic G., Lutovac M., Lutovac B., Ketin S., Biocanin R. Animal manure and environment, Fresenius Environmental Bulletin. 2020. Vol. 29, No. 3. P. 1289–1296.

Kulik K. N. Protective Forest plantations are the basis of the ecological framework of agricultural territories, Vestnik Rossiyskoy sel'skohozyaystvennoy nauki. 2018. No. 4. P. 18–21.

Kulshreshtha S., Kort J. External economic benefits and social goods from prairie shelterbelts, Agroforestry Systems. 2009. Vol. 75, No. 1. R. 39–47. DOI: 10.1007/s10457-008-9126-5

Lin X. J., Barrington S., Gong G., Choiniere D. Simulation of odour dispersion downwind from natural windbreaks using the computational fluid dynamics standard k-ε model, Canadian Journal of Civil Engineering. 2009. Vol. 36, No. 5. P. 895–910. DOI: 10.1139/S08-057

Lin X. J., Barrington S., Nicell J. A., Choiniere D. Livestock Odour Dispersion as Affected by Natural Windbreaks, Water Air and Soil Pollution. 2007. Vol. 182, No. 1. P. 263–273. DOI: 10.1007/s11270-007-9337-9

Lin X. J., Barrington S., Nicell J., Choiniere D., Vezina A. Influence of windbreaks on livestock odour dispersion plume in the field, Agriculture, ecosystems & environment. 2006. Vol. 116 (3). No. 34. P. 263–272. DOI: 10.1016/j.agee.2006.02.014

Liu L., Guan D., Peart M. R. The morphological structure of leaves and the dust-retaining capability of afforested plants in urban Guangzhou, South China, Environmental Science and Pollution Research. 2012. Vol. 19. R. 3440–3449.

Liu Q., Bundy D. S., Hoff S. J. The effectiveness of using tall barriers to reduce odor emission, Proceedings of the International Conference on Air Pollution from Agricultural Operations, Midwest Plan Service, Ames, Ia., 1996. R. 403–407.

Liu Z., Powers W., Mukhtar S. A review of practices and technologies for odor control in swine production facilities, Applied Engineering in Agriculture. 2014. Vol. 30, No. 3. R. 477–492.

Makarova N. M. Forest melioration of farmland areas and sanitary indicators of atmospheric air, Puti povysheniya effektivnosti oroshaemogo zemledeliya. 2016. No. 4 (94). P. 191–195.

Marszałek M., Kowalski Z., Makara A. Emission of greenhouse gases and odorants from pig slurry-effect on the environment and methods of its reduction, Ecological Chemistry and Engineering S. 2018. Vol. 25, No. 3. R. 383–394.

Matyssek R., Reich P., Oren R., Winner W. E. Response mechanisms of conifers to air pollutants, Ecophysiology of coniferous forests. Academic Press. 1995. R. 255–308. DOI: 10.1016/B978-0-08-092593-6.50014-1

Meena M., Sonigra P., Yadav G. Biological-based methods for the removal of volatile organic compounds (VOCs) and heavy metals, Environmental science and pollution research. 2021. Vol. 28, No. 3. P. 2485–2508.

Mishurov N. P. Recommendations for the technological design of systems for the removal and preparation of manure and litter for use, Tehnika i tehnologii v zhivotnovodstve. 2018. No. 4 (32). P. 44–56.

Mize C. W., Brandle J. R., Schoeneberger M. M., Bentrup G. Ecological development and function of shelterbelts in temperate North America, Toward agroforestry design: An ecological approach. 2008. P. 27–54.

Mume I. D, Workalemahu S. Review on windbreaks agroforestry as a climate smart agriculture practices, American Journal of Agriculture and Forestry. 2021. Vol. 9, No. 6. P. 342–347. DOI: 10.11648/j.ajaf.20210906.12

National Pork Producers Council An executive summary: a review of literature on nature and control of odors from pork production facilities: a report prepared by Bioresource Engineering Department Oregon State University for the subcommittee of the National Pork Producers Council. 1995. URL: http://www.mtcnet.net/~jdhogg/ozone/odor/odorlitreview.html (data obrascheniya: 05.02.2025).

Ni J. Q., Robarge W. P., Xiao C., Heber A. J. Volatile organic compounds at swine facilities: A critical review, Chemosphere. 2012. Vol. 89, No. 7. R. 769–788.

Nowak D. J. The effects of urban trees on air quality, USDA forest service. 2002. P. 96–102.

Parada-Ulloa M., Bozo Marambio, Moreno-Leiva G., Vasquez-Burgos K. Social representations of odors: case study in the Ñuble region, Chile (2019–2023), Frontiers in Social Psychology. 2024. Vol. 2. Article 1396536. DOI: 10.3389/frsps.2024.1396536

Park M. K., Hwang T. K., Kim W., Jo Y. J., Park Y.J. Probiotic feed additives mitigate odor emission in cattle farms through microbial community changes, Fermentation. 2024. Vol. 10, No. 9. Article No. 473.

Patterson P. H., Adrizal A. Management strategies to reduce air emissions: emphasis–dust and ammonia, Journal of Applied Poultry Research. 2005. Vol. 14, No. 3. R. 638–650.

Piccardo M. T., Geretto M., Pulliero A., Izzotti A. Odor emissions: A public health concern for health risk perception, Environmental Research. 2022. Vol. 204 (2). Article No. 112121. DOI: 10.1016/j.envres.2021.112121

Pilip L. V. Ashihmina T. Ya. Waste from pig farms – problems and solutions, Biodiagnostika sostoyaniya prirodnyh i prirodno-tehnogennyh sistem: Materialy HV Vserop. nauchno-prakt. konf. c mezhdunar. uchastiem. Kniga 2. Kirov: Vyatskiy gosudarstvennyy universitet, 2017. P. 180–183.

Pilip L. V. Syrchina N. V. New approaches to deodorization of pig manure, Ippologiya i veterinariya. 2018. No. 4 (30). P. 99–106.

Pilip L. V. Syrchina N. V. The role of ammonifiers in ammonia emissions from pig manure effluents, Izvestiya KGTU. 2023. No. 68. P. 46–54. DOI: 10.46845/1997-3071-2023-68-46-54

Pilip L. V. Analysis of environmental risks in the pig farming industry in the Kirov region, Vestnik Vyatskoy GSHA. 2020. No. 1 (3). P. 1.

Radhapriya, Navaneetha Gopalakrishnan A., Malini P., Ramachandran A. Assessment of air pollution tolerance levels of selected plants around cement industry, Coimbatore, India, Journal of Environmental Biology. 2012. Vol. 33 (3). R. 635–641.

Semenyutina A. V. Tereshkin A. V. Protective forest plantations: analysis of species composition and scientific basis for increasing the biodiversity of dendroflora, Uspehi sovremennogo estestvoznaniya. 2016. No. 4. P. 99–104.

Sharma B., Sharma S., Bhardwaj S. K. Plant-pollutant interactions with a special mention of dust accumulation by plants-A Review, Nature Environment & Pollution Technology. 2017. Vol. 16, No. 2. R. 375–384.

Shi Z., Xi L., Zhao X. Measurement of ammonia and hydrogen sulfide emission from three typical dairy barns and estimation of total ammonia emission for the chinese dairy industry, Animals. 2023. Vol. 13, No. 14. Article No. 2301. DOI: 10.3390/ani13142301

Suzelle B., Jun L. X., Denis C. Simulating odour dispersion about natural windbreaks, Comput. Fluid Dyn. Technol. Appl. 2011. Vol. 181. P. 182–215. DOI: 10.5772/19084

Syrchina N. V. Pilip L. V. Ashihmina T. Ya. Basic approaches to reducing odor pollution of the environment by livestock farms (review), Teoreticheskaya i prikladnaya ekologiya. 2024. No. 3. P. 6–19. DOI: 10.25750/1995-4301-2024-3-006-019

Syrchina N. V. Pilip L. V. The effect of acidification on the sulfide hydrogen emissions in the organic waste of pig farms, Problemy regional'noy ekologii. 2021. No. 4. P. 102–106. DOI: 10.24412/1728-323X-2021-4-102-106

Syrchina N.V. Pilip L. V. Kolevatyh E. P. The effect of sodium hypochlorite on the microbiota and odor of manure effluents, Povolzhskiy ekologicheskiy zhurnal. 2023. No. 1. P. 107–116. DOI: 10.35885/1684-7318-2023-1-107-116

Terent'ev Yu. N. Syrchina N. V. Ashihmina T. Ya. Pilip L. V. Reducing the emission of odor-forming substances in industrial pig farms, Teoreticheskaya i prikladnaya ekologiya. 2019. No. 2. P. 113–120. DOI: 10.25750/1995-4301-2019-2-113-120

Torshizi M. R., Miri A., Shahriari A., Dong Z., Davidson-Arnott R. The effectiveness of a multi-row Tamarix windbreak in reducing aeolian erosion and sediment flux, Niatak area, Iran, Journal of environmental management. 2020. Vol. 265. Article No. 110486. DOI: 10.1016/j.jenvman.2020.110486

Tyndall J. C., Larsen G. L. Drake Vegetative environmental buffers for odor mitigation, Pork Information Gateway. 2013. URL: https://porkgateway.org/wp-content/uploads/2015/07/vegetative-environmental-buffers-for-odor-mitigationpdf (data obrascheniya: 05.02.2025).

Tyndall J. C., Randell J., VanDyk J. VEB-econ: An outreach tool for designing vegetative environmental buffers, Journal of Extension. Vol. 56, No. 7. R. 45–65. DOI: 10.34068/joe.56.07.06

Tyndall J., Colletti J. Mitigating swine odor with strategically designed shelterbelt systems: a review, Agroforestry system. 2007. Vol. 69, No. 1. R. 45–65. DOI: 10.1007/s10457-006-9017-6

Ucar T., Hall F. R. Windbreaks as a pesticide drift mitigation strategy: a review, Pest Manage Science. 2001. Vol. 57 (8). R. 663–675. DOI: 10.1002/ps.341

Vtoryy V. F. Vtoryy S. V. Bazykin V. I. The results of studies of concentrations of climatically active gases in a barn with a loose content, AgroEkoInzheneriya. 2022. No. 4 (113). P. 114–120. DOI: 24412/2713-2641-2022-4113-114-120

Wang H., Takle E., Shen J. Shelterbelts and windbreaks: Mathematical modeling and computer simulation of turbulent flows, Annual Review of Fluid Mechanics. 2001. No. 33 (1). R. 549–586. DOI: 10.1146/annurev.fluid.33.1.549

Weninger T., Scheper S., Lackóová L., Kitzler B., Gartner K., King N. W., Cornelis W., Strauss P., Michel K. Ecosystem services of tree windbreaks in rural landscapes–a systematic review, Environmental Research Letters. 2021. Vol. 16, No. 10. Article No. 103002. DOI: 10.1088/1748-9326/ac1d0d

Woodbury B. L. Emission of volatile organic compounds from land-applied beef cattle manure as affected by application method, diet, and soil water condition, Journal of the ASABE. 2022. No. 65 (1). R. 123–133. DOI: 10.13031/ja.14587

Zhou X., Brandle J., Mize C., Takle E. Three-dimensional aerodynamic structure of a tree shelterbelt: definition, characterization and working models, Agroforestry Systems. 2005. No. 63 (2). R. 133–147. DOI: 10.1007/s10457-004-3147-5

Displays: 161; Downloads: 29;