Issue № 4 |
Original research |
pdf-version |
Syarki Maria | Northern water problems Institute KRC RAN, Petrozavodsk, st.A.Nevskogo, 50, msyarki@yandex.ru |
Keywords: least squares method orthogonal distance minimization method seasonal dynamics trajectory time shifts intra-annual and inter-annual variability phenological phases zooplankton |
Summary: The first response of natural systems to climate change is temporary shifts in seasonal phenomena. The paper considers approaches and methods for studying the zooplankton seasonal dynamics with special attention to temporal variability. The analysis and formalization of the average long-term trajectories of the abundance seasonal dynamics were carried out, and the phases of the seasonal process or phenophases were identified based on a series of data on zooplankton of the Kondopoga Bay of Lake Onega (1988–2021). The determination of the trajectories of the dynamics was carried out using the moving average methods and approximation by a given function. The parameters of the function were determined by the least squares regression (LSR) and orthogonal distance regression (ODR) methods. It is shown that a more accurate method is to use ODR. The scale of their intra-annual and interannual variability was estimated based on a series of models of the average long-term seasonal dynamics of quantities. The scale of possible time shifts was estimated and criteria for the extremity of rebound points were proposed. It was shown that within the vegetation period there are reliably 4 phenophases with characteristic features of the zooplankton structure using the method of discriminant analysis. Their terms differ from calendar seasons. Information obtained by different methods (continuous and discrete approaches) complement each other. Methods for formalizing seasonal plankton dynamics are the basis for assessing the response of plankton to fluctuations in climatic and anthropogenic factors. © Petrozavodsk State University |
Received on: 30 August 2024 Published on: 07 January 2025 |
Adrian R., Wilhelm S., Gerten D. Life-history traits of lake plankton species may govern their phenological response to climate warming, Global Change Biology. 2006. Vol. 12. P. 652–661.
Alimov A. F. Bogatov V. V. Golubkov S. M. Production hydrobiology. M.: Nauka, 2013. 344 p.
Andronikova I. N. Structural and functional organization of zooplankton in lake ecosystems. SPb.: Nauka, 1996. 190 p.
Boggs P. T., Rogers J. E. Orthogonal distance regression, Contemporary Mathematics. 1990. Vol. 112. P. 183–194.
Filatov N. N. Baklagin V. N. Efremova T. V. Pal'shin N. I. Variability of water temperature and ice cover characteristics of Lake Ladoga and Lake Onega, Diagnoz i prognoz termogidrodinamiki i ekosistem velikih ozer Rossii, Pod red. N. N. Filatova. Petrozavodsk: Karel'skiy nauchnyy centr RAN, 2020. P. 53–67.
Filatov N. N. Nazarova L. E. Georgiev A. P. Semenov A. V. Anciferova A. R. Ozhigina V. N. Bogdan M. I. Changes and variability of the climate of the European north of Russia and their impact on water bodies, Arktika: ekologiya i ekonomika. 2012. No. 2 (6). P. 80–93.
Fomina Yu. Yu. Syarki M. T. Determination of dynamic zooplankton characteristics of the Lake Onego, Principy ekologii. 2016. No.. 4 (20). P. 49–56. DOI: 10.15393/j1.art.2016.5223
Fomina Yu. Yu. Structural and functional organization and phenology of pelagic zooplankton of the Petrozavodsk Bay of Lake Onega: Avtoref. dip. ... kand. biol. nauk. Petrozavodsk, 2022. 22 p.
Jones E. L. Ecological modelling of Lake Erie: sensitivity analysis and simulation of nutrient, phytoplankton and zooplankton dynamics: Diss. master of science Biology and Civil Engineering. Waterloo; Ontario, Canada, 2011. 97 p.
Kalinkina N. M. Tekanova E. V. Syarki M. T. The ecosystem of Lake Onega: the response of aquatic communities to anthropogenic factors and climate change, Vodnoe hozyaystvo Rossii: problemy, tehnologii, upravlenie. 2017. No. 1. P. 4–18. DOI: 10.35567/1999-4508-2017-1-1
Kulikova T. P. Kustovlyankina N. B. Syarki M. T. Zooplankton as a component of the Lake Onega ecosystem. Petrozavodsk: Karel'skiy nauchnyy centr RAN, 1997. 112 p.
Lake Onego: Atlas, Otv. red. N. N. Filatov. Petrozavodsk: Karel'skiy nauchnyy centr RAN, 2010. 151 p.
Lazareva V. I. Features of long-term (1956–2005) zooplankton dynamics in the Rybinsk Reservoir, Vodnye resursy. 2010b. T. 37, No. 5. P. 590–604.
Lazareva V. I. Structure and dynamics of zooplankton in the Rybinsk Reservoir. M.: Tovarischestvo nauchnyh izdaniy KMK, 2010a. 183 p.
Methods of materials sampling and processing in hydrobiological research on freshwater bodies. Zooplankton and its productions, Pod red. G. G. Vinberg, G. M. Lavrent'eva. L.: GosNIORH, 1984. 33 c.
Mineeva N. M. Lazareva V. I. Poddubnyy S. A. Zakonnova A. V. Kopylov A. I. Kosolapov D. B. Korneva L. G. Sokolova E. A. Pyrina I. L. Mitropol'skaya I. V. Structure and functioning of plankton communities in the Rybinsk reservoir under climate change conditions, Biologiya vnutrennih vod. 2024. No. 1. C. 3–21. DOI: 31857/S032096522 4010018
Pal'shin N. I. Efremova T. V. Stochastic model of annual cycle of water surface temperature in lakes, Meteorologiya i gidrologiya. 2005. No. 3. P. 85–94.
Smirnova T. S. Planktonic rotifers and crustaceans. Zooplankton of Onego Lake, Zooplankton Onezhskogo ozera. L., 1972. P. 126–233.
Syarki M. T. Chistyakov S. P. On Application of the Orthogonal Distance Method to Onego Lake Plankton Seasonal Cycling Modelling, Ekologiya. 2013. No. 3. P. 234–236. DOI: 10.7868/S036705971302011X
Syarki M. T. Kulikova T. P. Zooplankton of Lake Onega: Database. Reg. nomer 2012621150 (9/11/2012). Pravoobladatel': Federal'noe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Institut vodnyh problem Severa Karel'skogo nauchnogo centra RAN (IVPS KarNC RAN) (RU).
Syarki M. T. Tekanova E. V. Seasonal cycle of primary production in Onego Lake, Izvestiya RAN. Ser. Biologicheskaya. 2008. No. 5. P. 621–625.
Syarki M. T. Assessment of the current state of the Onega Lake ecosystem based on hydrobiological indicators and the sustainability of the functioning of aquatic communities. Zooplankton, Krupneyshie ozera-vodohranilischa severo-zapada evropeyskiy territorii Rossii. Sovremennoe sostoyanie i izmeneniya ekosistem pri klimaticheskih i antropogennyh vozdeystviyah, Karel'skiy nauch. centr Rossiyskoy akad. nauk, In-t vodnyh problem Severa; [Redkol.: N. N. Filatov (otv. red.) i dr.]. Petrozavodsk: Karel'skiy nauchnyy centr RAN, 2015. P. 121–127.
Syarki M. T. How long is zooplankton summer in Onego Lake, Principy ekologii. 2013b. No. 4. P. 70–75. DOI: 10.15393/j1.art.2013.2781
Syarki M. T. The study of seasonal dynamics of plankton trajectories using the duble-smoothing method, Principy ekologii. 2013a. No. 1 (5). P. 61–67. DOI: 10.15393/j1.art.2013.2141
Syarki M. T., Fomina Yu. Yu. Osobennosti sezonnyh processov v planktone krupnyh ozer, Ozera Evrazii: problemy i puti ih resheniya: Materialy II Mezhdunar. konf. 19–24 maya 2019 g. Ch. 2. Kazan', 2019. P. 336–341.
The largest lake-reservoirs of the north-west european part of Russia: Current state and changes of ecosystems under climate and anthropogenic impact, Karel'skiy nauch. centr Rossiyskoy akad. nauk, In-t vodnyh problem Severa; [Redkol.: N. N. Filatov (otv. red.) i dr.]. Petrozavodsk: Karel'skiy nauchnyy centr RAN, 2015. 375 p.
Third assessment report on climate change and its consequences in the Russian Federation. SPb.: Naukoemkie tehnologii, 2022. 124 p.
Tselishcheva E. M., Lazareva V. I. Long-Term Dynamics of Zooplankton in the Kama and Votkinsk Reservoirs, Inland Water. 2021. Biol 14. P. 415–426. DOI: 10.1134/S1995082921040118
Winder M., Schindler D. E. Climatic effects on the phenology of lake processes, Global Change Biology. 2004. Vol. 10. P. 1844–1856.