Wakker V., Burchakov A. comunities of mature helminths of moor frog Rana Arvalis in the steppe zone of the republic of Kazakhstan // Principy èkologii. 2022. № 2. P. 37‒57. DOI: 10.15393/j1.art.2022.11542


Issue № 2

Original research

pdf-version

comunities of mature helminths of moor frog Rana Arvalis in the steppe zone of the republic of Kazakhstan

Wakker
   Viktor
PhD, assistant professor, Pavlodar Pedagogical Institute, 140000 Pavlodar, Mir st., 60, vgwacker@gmail.com
Burchakov
   Alexander
Seneos GmbH, Josef-Lammerting-Allee 8, 50933 Kõln, Germany, alexander.burceacov@gmail.com
Keywords:
component communities
Rana arvalis
Helminthe
Opisthioglyphe ranaе
Oswaldocruzia filiformis
Haplometra cylindracea
Rhabdias bufonis
Pleurogenes intermedius
Каzаkhstan
Summary: Communities of five species of sexually mature helminths were studied in Rana arvalis from the Irtysh River floodplain and anthropogenic biotopes (Pavlodar, Republic of Kazakhstan), namely Rhabdias bufonis, Oswaldocruzia filiformis, Opisthioglyphe hapae, Haplometra cylindracea and Pleurogenes intermedius. The component host communities in each biotopic sample are divided into three groups of infra-communities. A little more than half of amphibians have cenoses that are formed by chance. The other two groups arise in spite of randomness: the actual frequencies and the theoretical ones, calculated in accordance with the null hypothesis of random formation, differ significantly. As part of the last two groups with a high occurrence (51-62%) in amphibians from both the floodplain and the city, four are distinguished: R. bufonis + Os. filiformis, R. arvalis + O. ranae, R. bufonis + Os. filiformis + O. ranae and R. bufonis. In the floodplain biotope of R. arvalis, the basic number of R. bufonis (55.3%), Os. filiformis (48.5%) and O. ranae (60.3%). is concentrated in these complexes. In the discussed set of combinations of species in hosts from anthropogenic biotopes, the number of rhabdias is 89.8%, osvaldocruzia – 81.7%, and opistioglyph – 51.8 %. The formation of infra-communities of helminths in two different biotopic samples of R. arvalis, similar in composition, mechanism of formation, stable occurrence in space and time, placement of the leading number of individuals of R. bufonis, Os. filiformis and O. ranae in four cenoses indicates the presence of not only random, but also regular processes in R. arvalis populations. On average, in the Middle Irtysh region, two generations of R. bufonis and O. ranae and one and a half Os. filiformis are replaced during the season in the populations of R. arvalis. One generation of H. cylindracea or P. intermedius is replaced by another within two to three years. While in the host population there will be a change in one generation of haplometers or pleirogenes, rhabdias and opistioglyphs manage to change four to six, and osvaldocrusion – two or three. Parallel implementation of their development cycles by five species of helminths, different rates and number of alternating generations during the activity of the host lead to the overlap of species flows. As a result, some combinations of parasites are randomly formed. The time of infection of R. arvalis with five helminth species acts as an important reason for ordering the distribution of helminth species streams. The consequence is the non-random formation of slightly less than half of the infra- communities. If R. arvalis is the first to become infected with H. cylindracea or P. intermedius, then these trematodes restrain the development of helminths, which are populated later. This is supported by the fact that in all communities in which, together with the named flukes, R. bufonis, Os. filiformis or O. ranae parasyte, the latter have reduced number. In cases where the hosts are the first to form communities with the participation of rhabdias, ovaldocrusia, or opistioglyphs, difficulties arise for the development of haplometers and pleirogens. This is indicated by the high frequency and concentration of the leading number of individuals of R. bufonis, Os. filiformis and O. ranae in complexes that consist only of these species. This is also evidenced by the rarity of combinations in which H. cylindracea and P. intermedius are located apart or together.

© Petrozavodsk State University

Reviewer: O. Mineeva
Received on: 17 February 2021
Published on: 10 July 2022

References

Akani G. C., Luiselli L., Amuzie C. C., Wokem G. N. Helminth community structure and diet of three Afrotropical anuran species: a test of the interactive-versus-isolationist parasite communities’ hypothesis, Web Ecol. 2011. Vol. 11. P. 11–19. DOI: 10.5194/we-11-11-2011

Bakanov A. I. Quantitative rating of dominance in ecological communities, Institut biologii vnutrennih vod AN SSSR. Borok, 1987. 64 p.

Balashov Yu. S. Terms and concepts used in the study of populations and communities of parasites, Parazitologiya. 2000. T. 34, No. 5. P. 361–370.

Bigon M. Taunsend K. Ecology. Individuals, Populations, Communities. M.: Mir, 1989 T. 1. 667 p.

Boev S. N. Sokolova I. B. Panin V. Ya. Helminths of ungulates animals in Kazakhstan. Alma-Ata: Izd-vo Akad. nauk KazSSR, 1962. T. 1. 377 p.

Burakova A. V. Ecological and genetic characteristics and helminthic fauna of the common frog (Rana arvalis Nilss.) in the urbanization gradients: Avtoref. dip. ... kand. biol. nauk. Ekaterinburg, 2010b. 23 p.

Burakova A. V. Structure of population parazitofauna of Rana arvalis Nilss. in the conditions of anthropogenic impact, Urboekosistemy: problemy i perspektivy razvitiya: Materialy V Mezhdunarodnoy nauchno-prakticheskoy konferencii. Vyp. 5, chast' III: Zhivotnye v urboekosisteme, 25–26 marta. Ishim, 2010a. P. 135–138.

Chihlyaev I. V. Fayzulin A. I. Kuzovenko A. E. Analysis of the helminth fauna of the green toad Bufotes viridis (Laurenti, 1768) in the urbanized territories of the Samara region, Izvestiya Samarskogo nauchnogo centra Rossiyskoy akademii nauk. 2017. T. 19, No. 5. P. 178–184.

Claxton A., Laursen J. Endoparasite Community Differences in Sunfish (Lepomis spp.) Above and Below Coal Mine Effluent in Southern Illinois, J Parasitol. 2015. Vol. 101 (3). P. 282–289. DOI: 10.1645/12-157.1

De Yamada Priscilla Oliveira Fadel, Yamada Fabio Hideki, Silva Reinaldo José da & s dos Anjos Luciano Alve. Ecological implications of floods on the parasite communities of two freshwater catfishes in a Neotropical floodplain, Acta Parasitologica. 2017. Vol. 62, Issue 2. P. 312–318.

Dorovskih G. N. Tereschenko V. G. Stepanov V. G. Seasonal dynamics of the structure of component communities of the ruff parasites from the Vychegda River, Parazitologiya. 2016. T. 50, No. 1. P. 58–68.

Esch G. W., Bush A. 0., and Aho J. M. Parasite communities: Patterns and processes. Chapman and Hall, London, U. K., 1990. 335 p.

Fayzulin A. I. Zaripova F. F. Helminths of marsh frog Pelophylax ridibundus (Pallas, 1771) Salavat (Republic of Bashkortostan), Izvestiya Samarskogo nauchnogo centra Rossiyskoy akademii nauk. 2017. T. 19, No. 2. P. 75–79.

Ginecinskaya T. A. Golubeva E. B. Changes in the helminth fauna of Rana temporaria in Peterhof Park over 50 years, Evolyuciya parazitov: Materialy Pervogo Vsesoyuznogo simpoziuma. Tol'yatti, 1991. P. 211–215.

Golikova E. A. Ecology of parasites of the common minnow and their communities in the conditions of small rivers of the Vychegda basin: Avtoref. dip. ... kand. biol. nauk. Syktyvkar, 2005. 24 p.

Grabda-Kazubska B. Abbreviation of the life cycles in plagiorchid trematodes. General remarks, Acta Parasit. Pol. 1976. Vol. 26. Fasc. 3. P. 125–141.

Grzybek M., Bajer A., Bednarska M., Al-Sarraf M., Behnke-Borowczyk J., Harris P. D., Price S. J., Brown G. S., Osborne S, J., Siński E., Behnke J. M. Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of bank voles (Myodes glareolus) in NE Poland, Parasitology. 2015. Vol. 142 (14). P. 1722–1743. DOI: 10.1017/S0031182015001225

Gulyaev V. D. Evolyuciya form germafroditizma Cyclophyllidea (Cestoda). 2. Morfofunkcional'nye prichiny vozniknoveniya cepney s protoginicheskim razvitiem polovogo apparata [Evolution of hermaphroditism forms of Cyclophyllidea (Cestoda). 2. Morphofunctional causes of tapeworms with protogynic development of sexual apparatus, Parazitologiya. 2005. T. 39, No. 3. P. 243–251.

Hamann M. I., Kehr A. I. and Gonzalez C. E. Niche specificity of two glyphtelmins (Trematoda) congeners infecting Leptodactylus chaquensis (Anura: Leptodactylidae) from Argentina, Journal of Parasitology. 2009. Vol. 95. P. 817–822. DOI: 10.1645/GE-1860.1

Holmes J. C. Competition, contacts, and other factors restricting niches of parasitic helminths, Ann. Parasitol, Hum. Comp. 1991. Vol. 65, Suppl. 1. P. 69–72. DOI: 10.1139/z02-188

Holmes J. C. Effects of concurrent infections on Hymenolepis diminuta (Cestoda) and Moniliformis dubius (Acanthocephala). I. General effects and comparison with crowding, J. Parasitol. 2002. Vol. 88 (3). P. 434–439.

Ieshko E. P. Korosov A. V. Sokolov C. G. Species diversity of parasite communities of Chinese sleeper Perccottus glenii (Actoinoporterygii, Odontobutidae) in native and acquired parts of the host range, Parazitologiya. 2019. T. 53, No. 2. P. 145–158.

Ivanter E. V. Korosov A. V. Fundamentals of biometrics: Introduction to the statistical analysis of biological phenomena and processes. Tutorial. Petrozavodsk: PGU, 1992. 163 p.

Janovy J. Jr. Concurrent infections and the community ecology of helminths parasites, J. Parasitol. 2002. Vol. 88 (3). P. 440–445.

Joly P., Guesdon V., Fromont E., Plenet S., Grolet O., Guegan J. F., Hurtrez-Bousses S., Thomas F. and Renaud F. Heterozygosity and parasite intensity: lung parasites in the water frog hybridization complex, Parasitology. 2008. Jan. Vol. 135 (Pt 1). P. 95–104. DOI: 10.1017/S0031182007003599

Kennedi K. Ecological parasitology. M.: Mir, 1978. 230 p.

Kennedy C. R., Berrilli F., Cave D., De Liberto C. Orecchia P. Composition and diversity of helminth communities in eels Anguilla anguilla in the River Tiber: long-term changes and comparison with insular Europe, J. of Helminthology. 1998. Vol. 72, Issue 4. P. 301–306. DOI: 10.1017/S0022149X00016hology643

Kennedy C. R., Moriarty C. Long-term stability in the richness and structure of helminth communities in eels, Anguilla anguilla, in Lough Derg, River Shannon, Ireland, Journal of Helmintology. 2002. Vol. 76, Issue 4. P. 315–322. DOI: 10.1079/JOH2002140

Kuzmin J., Tkach V. Family Rhabdiasidae Railliet, 1915. 2019. URL: http://izan.kiev.ua/ppages/rhabdias/list.htm (03.08.2019).

Kuzmin Yuriy, Dmytrieva I., Marushchak O., Morozov-Leonov S., Oskyrko O., Nekrasova O. Helminth Species and Infracommunities in Frogs Pelophylax ridibundus and P. esculentus (Amphibia: Ranidae) in Northern Ukraine, Acta Parasitologica. 2020. Vol. 65. P. 341–353.

Lakin G. F. Biometry: Uchebnoe posobie dlya biol. spec. vuzov. M.: Vysshaya shkola, 1990. 352 p.

Langford G. J., Vhora M. S., Bolek M. G., Janovy J. Jr. Co-Occurrence of Haemotoloechus complexus and Rhabdias joaquinensis in the Plains Leopard Frog from Nebraska, J. Parasitol. 2013. Vol. 99 (3). P. 558–560.

Milazzo C., Casanova J., Aloise G., Ribas A., Cagnin M. The helminth community of Talpa romana (Thomas, 1902) (Insectivora, Talpidae) in southern Italy, Parasitology Research. 2002. Vol. 88. P. 979–983.

Olsson P. D., Gribb T. H., Tkach V. V., Bray R. A., Littlwood D. T. J. Phylogeny and classification of the Digenea (Platyhelminths: Trematoda), Intern. J. for Parasitology. 2003. Vol. 33. P. 733–755.

Parasite communities of the river minnow (Phoxinus phoxinus L.), Parazitologiya. 2000. T. 34, No. 3. P. 196–209.

Pavlovskiy E. N. Organism as a habitat, Priroda. 1934. No. 1. P. 80–91.

Pesenko Yu. A. Príncipes and methods in faunistic studies. M.: Nauka, 1982. 288 p.

Plohinskiy N. A. Biometry. M.: Izd-vo MGU, 1970. 359 p.

Poulin R. Evolutionary Ecology of Parasites. Princeton, NY, USA: Princeton University Press, 2006. 360 p.

Poulin R. Interactions between species and the structure of helminth communities, Parasitology. 2001. 122 (Suppl.) S. 3–11. DOI: 10.1017/ S0031182000016991

Poulin R., Luque J. L. A general test of the interactive – isolationist continuum in gastrointestinal parasite communities of fish, International Journal of Parasitology. 2003. Vol. 33. P. 1623–1630.

Randhawa H. S. Numerical and functional responses of intenstinal helminths in thee rajid skates: evidence for competition between parasites?, Parasitology. 2012. Vol. 139, Issue 13. P. 1784–1793.

Rohde K. Ecology of marine parasites. 2nd ed. Wallingford, U.K., 1993. 298 p.

Ryzhikov K. M. Sharpilo V. P. Shevchenko N. N. Helminths of amphibians of the USSR fauna. M.: Nauka, 1980. 279 p.

Schabuss M., Kennedy C. R., Konecny R., Grillitsch B., Schiemer F., Herzig A. Long-term investigation of the composition and richness of intestinal helminth communities in the stocked population of eel, Anguilla anguilla, in Neusiedler See, Austria, Parasitology. 2005. Vol. 130, Issue 2. P. 185–194. DOI: 10.1017/S0031182004006444

Smit P. Greig-Smith P. Quantative Plant Ecology. Butterworts, London, 1964. M.: Mir, 1967. 360 p.

Spickett A., Junker K., Krasnov B., Haukisalmi V., Matthee S. Intra- and interspecific similarity in species composition of helminth communities in two closely-related rodents from South Africa, Parasitology. 2017. Vol. 144 (9). P. 1211–1220. DOI: 10.1017/S003118201700049X

Tarasovskaya N. E. Helminthofauna of terrestrial cold-blooded vertebrates of the Pavlodar region and adjacent regions, Materіali H Mіzhnarodnoї naukovo-praktichnoї іnternet-konferencії «Problemi ta perspektivi rozvitku nauki na pochatku tret'ogo tisyacholіttya u kraїnah SND» («Problemy i perspektivy razvitiya nauki v nachale tret'ego tysyacheletiya v stranah SNG»). Pereyaslav-Hmel'nickiy, 2013. P. 31–33.

Timi J. T., Lanfranchi A. L. The importance of the compound community on the parasite infracommunity structure in a small benthic fish, Parasitology Research. 2009. Vol. 104, Issue 2. P. 295-302. DOI: 10.1007/s00436-008-1191-1

Vakker V. G. Brushko Z. K. Tarasovskaya N. E. To the helminthofauna of the amphibians of Kazakhstan, Materialy Vsesoyuznogo nauchno-metodich. soveschaniya zoologov ped. vuzov SSSR. (Red. P. P. Naumov, A. G. Yusufov). Mahachkala: DGU, 1990. P. 59–61.

Vakker V. G. Ecology of the nematode Rhabdias bufonis (Nematoda: Rhabdiasidae) in the steppe of the Republic of Kazakhstan, Principy ekologii. 2020. No. 1. P. 43–67.

Vakker V. G. Parasitic system of the nematode Oswaldocruzia filiformis (Strongylida: Molineidae) in Kazakhstan, Principy ekologii. 2018b. T. 7, No. 4. P. 44–64.

Vakker V. G. To the ecology of the trematode Opisthioglyphe ranae (Telorchidae), Principy ekologii. 2018a. T. 7, No. 1. P. 38–59.

Valtonen E. T., Pullkinen K., Poulin R., Julkunen M. The structure of parasite component communities in brackfish water of the northeastern Baltic Sea, Parasitology. 2001. Vol. 122. P. 471–481. DOI: 10.1017/s0031182001007491

Vershinin V. L., Burakova A. V., Vershinina S. D. Comparative Analysis of the Parasitocenoses of Amphibians from the Family Ranidae (Anura) in the Urbanization Gradient, Russian journal of ecology. 2017. Vol. 48, No 5. P. 466–475.

Vhora M. S., Bolek M. G. Temporal occurrence and community structure of helminth parasites in southern leopard frogs, Rana sphenocephala, from north central Oklahoma, Parasitology Research. 2015. Vol. 114, Issue 3. P. 1197–1206. DOI: 10.1007/s00436-014-4303-0

Displays: 1257; Downloads: 742;