Khoroshev A. Spatial structure as a factor of stability of bioproduction functioning of steppe geosystems (on the example of Aituar steppe, the Southern Urals) // Principy èkologii. 2020. № 3. P. 71‒86. DOI: 10.15393/

Issue № 3

Conference proceedings May 22, 2020


Spatial structure as a factor of stability of bioproduction functioning of steppe geosystems (on the example of Aituar steppe, the Southern Urals)

   Alexander Vladimirovich
D.Sc., Docent, Lomonosov Moscow State University, Leninkiye Gory 1, 119991 Moscow, Russia,
landscape structure
herbal phytomass
Southern Urals
Summary: The dependence of the variability of landscape functioning on its spatial structure was studied on the example of the steppes of the southern Urals. The values of NDVI and its intra-seasonal variability were considered as functions of landscape, neighborhoods, and the configuration of stows. Field verification showed that NDVI can be used as an indicator of aboveground herbal phytomass. NDVI increments between time pairs were ranked by deviations from modal values. The stability of NDVI dynamics was characterized by the Shannon index through the ratio of repeatability of deviations from background increments. Statistical methods revealed a variation in the contributions of landscape organization factors to the dynamics of NDVI during the warm period. On the southern slopes and in the bottoms of gullies, the phytomass significantly deviates from the background due to the landscape. The degree of stability of NDVI dynamics depends on the position relative to boundaries of stows and their shape. In the central sectors of plateaus and deluvial plumes, the dependence on the background landscape dynamics weakens, and the contribution of positive reverse soil-phytocenotic relationships to the formation of phytomass increases.

© Petrozavodsk State University

Received on: 27 June 2020
Published on: 29 September 2020


Araya S., Ostendorf B., Lyle G., Lewis M. Remote Sensing Derived Phenological Metrics to Assess the Spatio-Temporal Growth Variability in Cropping Fields , Advances in Remote Sensing. 2017. Vol. 6. P. 212–228. DOI: 10.4236/ars.2017.63016.

Basso B., Ritchie J. T., Pierce F. J., Braga R. P. and Jones J. W. Spatial validation of crop models for precision agriculture, Agricultural Systems. 2001. Vol. 68. P. 97–112. DOI: 10.1016/S0308-521X(00)00063-9.

Corwin D. Site-specific management and delineating management zones, Oliver M. (Ed.) Precision Agriculture for Food Security and Environmental Protection. Ear5thscan. London, UK, 2013. P. 135–157.

Current landscape-ecological state and problems of optimization of the natural environment of the regions: Proceedings of the XIII International landscape conference, is dedicated to the 100th anniversary of the birth of F. N. Milkov. Voronezh: ISTOKI, 2018. T. 1. 489 p. T. 2. 426 p.

Doraiswamy P. C., Sinclair T. R., Hollinger S., Akhmedov B., Stern A. and Prueger J. Application of MODIS Derived Parameters for Regional Crop Yield Assessment, Remote Sensing of Environment. 2005. Vol. 97. P. 192–202. DOI: 10.1016/j.rse.2005.03.015.

Grodzins'kiy M. D. Landscape ecology. K.: Znannya, 2015. 550 p.

Horoshev A. V. Leonova G. M. Response to increasing humidification in the aituar steppe landscape (the Southern Urals), Vestnik Moskovskogo universiteta. Seriya 5: Geografiya. 2015. No. 4. P. 95–103.

Horoshev A. V. Landscape pattern of the Aituar steppe (“Orenburgsky” nature reserve) and ecological series of urochishches, Problemy geografii Urala i sopredel'nyh territoriy: Materialy IV Vserossiyskoy nauchno-prakticheskoy konferencii s mezhdunarodnym uchastiem. Chelyabinsk: Kray Ra, 2016. P. 210–216.

Kaspar T. C., Colvin T. S., Jaynes D. B., Karlen D. L., James D. E., Meek D. W., Pulido D., Butler H. Relationship between six years of corn yields and terrain attributes, Precision Agriculture. 2003. Vol. 4. P. 87–101. DOI: 10.1023/A:1021867123125.

Nagy A., Fehér J., Tamás J. Wheat and maize yield forecasting for the Tisza river catchment using MODIS NDVI time series and reported crop statistics, Computers and Electronics in Agriculture. 2018. Vol. 151. P. 41–49. DOI: 10.1016/j.compag.2018.05.035.

Olaya V. A gentle introduction to SAGA GIS. Edition 1.2. 2004. 202 p.

Pahuchiy V. V. Pahuchaya L. M. Experience of using vegetation indices for complex researches on the objects of hydro and forest amelioration, Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Seriya: Lep. Ekologiya. Prirodopol'zovanie. 2014. No. 1 (21). P. 33–41.

Puzachenko Yu. G. Biogeocoenosis as a complex dynamic system, Biogeocenologiya v XXI veke: idei i tehnologii. M.: Tovarischestvo nauchnyh izdaniy KMK, 2017a. P. 11–114.

Puzachenko Yu. G. Landscape organization, Voprosy geografii. Sb. 138. Gorizonty landshaftovedeniya. M.: Kodeks, 2014. P. 35–64.

Puzachenko Yu. G. Mathematical methods in ecological and geographical studies. M.: Akademiya, 2004. 416 p.

Puzachenko Yu. G. Theoretical and methodological basis of long-term ecological and geographical investigation at natural reserves, Voprosy geografii. Sb. 143. Ekologo-geograficheskie issledovaniya na zapovednyh territoriyah. M.: RGO, 2017b. P. 192–233.

Raynolds M. K., Walker D. A., Maier H. A. NDVI patterns and phytomass distribution in the circumpolar Arctic, Remote Sensing of Environment. 2006. Vol. 102. P. 271–281. DOI: 10.1016/j.rse.2006.02.016.

Solncev V. N. Structural landscape science: base of a concept. Some arguments. M., 1997. 12 p.

Turner M. G. & Gardner R. H. Landscape ecology in theory and practice. Pattern and process. N. Y.: Springer, 2015. 482 p.

Verhulst N., Govaerts B. The normalized difference vegetation index (NDVI) GreenSeekerTM handheld sensor: Toward the integrated evaluation of crop management. Part A: Concepts and case studies. Mexico, D. F.: CIMMYT, 2010. P. 1–16.

Displays: 2481; Downloads: 526;