Kul`nev V., Nasonov A., Tsvetkov I., Korol` T., Shakhovskaya K. Soil biotesting based on fractal characteristics of plants // Principy èkologii. 2020. № 4. P. 40‒53. DOI: 10.15393/j1.art.2020.10662


Issue № 4

Original research

pdf-version

Soil biotesting based on fractal characteristics of plants

Kul`nev
   Vadim Vyacheslavovich
PhD, Central Black Earth Interregional Office of the Federal Service for Supervision of Natural Resources, 394087, Voronezh, Lomonosov st. 105, kulneff.vadim@yandex.ru
Nasonov
   Andrey Nikolaevich
PhD, Russian State Agrarian University - K.A. Timiryazev Moscow Academy of Agpicultural Sciences, 127550, Moscow, Timiryazevskaya st. 49, adn22@yandex.ru
Tsvetkov
   Ilya Viktorovich
D.Sc., Tver State University, 170100, Tver , Zhelyabov st., 33, mancu@mail.ru
Korol`
   Tatyana Stepanovna
PhD, Russian State Agrarian University - K.A. Timiryazev Moscow Academy of Agricultural Sciences, 127550, Moscow, Timiryazevskaya st. 49, tskorol@gmail.com
Shakhovskaya
   Kira Aleksandrovna
Russian State Agrarian University - K.A. Timiryazev Moscow Academy of Agricultural Sciences, 127550, Moscow, Timiryazevskaya st. 49, sh.kira2014@yandex.ru
Keywords:
biotesting
limiting factors
Hearst index
soil
pollutants
self-organization
fractal
fractal dimension
Summary: Intense technological impact on the components of the environment once again explains the need for a detailed analysis of interaction between man and nature. Assessment of the degree of environmental pollution can be based on the reaction of biological test objects to external influences, including such as chemical ones, implemented through the flow of a wide range of pollutants from the soil to the vegetative parts of plants. The aim of the study is to develop new models that increase the informativity of soil biotesting by describing self-organization as a transitional process. One of prospective methods for determining soil pollution is a method of biotesting, in which the dynamics of changes in the structural parameters of the test object is evaluated in time (length of germ, development of root system). In this aspect, fractals have proved to be an extremely convenient mathematical tool for describing the dynamics of the development of a natural object in changing environmental conditions, in which a natural object retains its self-similarity, i.e. behaves as a single unite. In contrast to the deterministic approach, which allows us to evaluate only the probability of a crisis state in the development of a plant, the modeling proposed by the authors shows the dynamics and direction of the process: either synthesis or destruction. This feature is a methodological basis for assessing the impact of technogenic pollution of soils on the dynamics of metabolism of the test-object under examination. In this work, the dependence of the fractal characteristics of oat seedlings on the place of its germination and soil was studied. In our case, the fractal parameters allow us to judge the degree of development of the plant and how favorable the external conditions are for its growth.

© Petrozavodsk State University

Received on: 18 May 2020
Published on: 27 December 2020

References

Balandina L. P. Shabanova A. V. Experience in assessing the quality of reclamation of oil-contaminated soils using bio-testing method, Ekologiya i promyshlennost' Rossii. T. 11. No. 11. M.: Kalvis, 2007. P. 46–47.

Benoit B. Mandelbrot, Richard L. Hudson. The (mis) Behavior of Markets. A Fractal View of Risk, Ruin, and Reward. Basic Books, 2017.

Boularbah A., Schwartz C., Bitton G., Morel J. L. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils, Chemosphere. 2006. Vol. 63. Issue 5. P. 802–810. DOI: 1016/j.chemosphere.2005.07.079.

Iudin D. I. Koposov E. V. Fractals: from simple to complex: Monografiya. N. Novgorod: Izd-vo NNGASU, 2012. 200 p.

Kul'nev V. V. Nasonov A. N. Zhogin I. M. Cvetkov I. V. Grabarnik V. E. Karelin N. V. On the experience of managed algoremediation of a recreational pond, Ekologiya i promyshlennost' Rossii. T. 24. No. 3. M.: Kalvis, 2020. P. 58–64. DOI: 10.18412/1816-0395-2020-3-58-64.

Manzhurov I. L. Fractal model of surface contamination density distribution: Avtoref. dip. ... kand. fiz, mat. nauk. Ekaterinburg, 2002. 24 p.

Matthieu N. Bravin, Aurélia M. Michaud, Bourane Larabi. Philippe Hinsinger RHIZOtest: A plant-based biotest to account for rhizosphere processes when assessing copper bioavailability, Environmental Pollution. 2010. Vol. 158. Issue 10. P. 3330–3337. DOI: 1016/j.envpol.2010.07.029.

Molchatskiy S. L. Kazancev I. V. Matveeva T. B. Application of the fractal analysis method for bioindication environmental assessment., Samarskiy nauchnyy vestnik. 2016. No. 4 (17). P. 28–31.

Nasonov A. N. Cvetkov I. V. Kizeev A. N. Kul'nev V. V. Martynov D. Yu. Smetanin V. I. Application of fractal analysis in lichenoindication of atmospheric air pollution of anthropogenically loaded territories, Ekologiya i promyshlennost' Rossii. 2019. T. 23. No. 3. P. 34–38. DOI: 10.18412/1816-0395-2019-03-34-38.

Nasonov A. N. Cvetkov I. V. Zhogin I. M. Kul'nev V. V. Repina E. M. Kirnosov S. L. Zvyaginceva A. V. Bazarskiy O. V. Fractals in Earth Sciences: Ucheb. posobie. Voronezh: Kovcheg, 2018. 82 p.

Nasonov A. N. Cvetkov I. V. Peculiarities of management of technological processes development based on multifractal dynamics, Upravlenie razvitiem krupnomasshtabnyh sistem MLSD'2018: Trudy odinnadcatoy Mezhdunarodnoy konferencii: V 3 t., Pod obsch. red. P. N. Vasil'eva, A. D. Cvirkuna. M.: Izd-vo IPU RAN im. V. A. Trapeznikova, 2018. P. 83–88.

Nasonov A. N. Kul'nev V. V. Grafkina M. V. Simulation of dynamics and forecast of ecological conditions of the air environment in residential areas, Ekologiya i razvitie obschestva. 2019. No. 2 (29). P. 56–64.

Nicolotti G., Egli S. Soil contamination by crude oil: impact on the mycorrhizosphere and on the revegetation potential of forest trees, Environmental Pollution. 1998. Vol. 99. Issue 1. P. 37–43. DOI: 10.1016/S0269-7491(97)00179-6.

Pestova O. A. Chupahina A. I. Soil biotesting with microorganisms, Dekada ekologii: Materialy XI Mezhdunarodnogo konkursa. Omsk, 2017. P. 39–43.

Podlazov A. V. The future of applied mathematics: Lectures for young researchers. M.: Editorial URSS, 2005. P. 404–426.

Rozenberg G. S. Fractal methods for community structure analysis, Principy ekologii. 2018. No. 4. P. 4–43. DOI: 10.15393/j1/art.2018.8406.

Smirnova T. S. Cheloznova K. V. Galkina A. A. Application of enchitreid worms in biodiagnostics of urban soil conditions, Ekologicheskie sistemy i pribory. 2020. No. 2. P. 15–22.

Terehov S. V. Fractals and similarity physics. Doneck, 2011. 255 p.

Wyszkowski M., Ziólkowska A. Role of compost, bentonite and calcium oxide in restricting the effect of soil contamination with petrol and diesel oil on plants, Chemosphere. 2009. Vol. 74. Issue 6. P. 860–865. DOI: 10.1016/j.chemosphere.2008.10.035.

Xiufeng Cao, Yufang Song, Jianrong Kai, Xiaoxia Yang, Puhui Ji. Evaluation of EROD and CYP3A4 activities in earthworm Eisenia fetida as biomarkers for soil heavy metal contamination, Journal of Hazardous Materials. 2012. Vol. 243. P. 146–151. DOI: 10.1016/j.jhazmat.2012.10.012.

Zhukova L. A. Ecological scales and methods of analysis of plant ecological diversity: Monografiya. Yoshkar-Ola: Izd-vo Mariyskogo un-ta, 2010. 368 p.

Displays: 2906; Downloads: 639;