Anufriev A. Dynamics and rate of body temperature growth in hibernators upon awakening // Principy èkologii. 2020. № 4. P. 4‒15. DOI: 10.15393/

Issue № 4

Original research


Dynamics and rate of body temperature growth in hibernators upon awakening

   Andrei Ivanovich
D.Sc., Institute for biological problems of cryolithozone SB RAS,
body temperature
rate of temperature increase
Long-tailed ground squirrel
Arctic ground squirrel
White-breasted hedgehog
Summary: The presented report analyzes the dynamics of body temperature and the rate of temperature growth during awakenings in winter-sleeping Sciuridae and Erinaceus families. Observations of body temperature were carried out with thermographs implanted in the body cavity. Analysis of the awakening showed that there is an S-shape of the temperature graph of self-heating. The rate of increase in body temperature in animals varies at different stages of self-heating. At the initial stage, the body temperature increases slowly and almost linearly. Then comes the phase of rapid growth of body temperature, which in all animals occurs in the range from 10–12 to 22–25ºС. The rate of temperature growth reaches a maximum, after which it sharply decreases. In the representatives of the five species under consideration, the peak rate of increase in body temperature was on average 0.2-0.35 deg/min. The average rate of temperature growth was 0.1–0.15 deg/min. In the white-breasted hedgehog E. roumanicus, the maximum rate is 60% higher than that of similar squirrels (S. undulatus, S. parryii and M. camtschatica) and is similar to the maximum heating rate of the chipmunk (T. sibiricus) with a body weight of an order of magnitude less.

© Petrozavodsk State University

Received on: 24 April 2020
Published on: 26 December 2020


Wiersma M., Beuren T. M. A., de Vrij E. L., Reitsema V. A., Bruintjes J. J., Bouma H. R., Brundel B. J., Henning R. H. Torpor-arousal cycles in Syrian hamster heart are associated with transient activation of the protein quality control system, Comp. Biochem. Physiol. (B). Biochem. Mol. Biol. 2018. Vol. 223. P. 23–28.

Prendergast B. J., Freeman D. A., Zucker I. and Nelson R. J. Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels, Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002. Vol. 282. P. 1054–1062.

Ahremenko A. K. Anufriev A. I. Solomonov N. G. Solomonova T. N. Vasil'ev V. N. Winter hibernation at temperatures below zero, Sibirskiy ekologicheskiy zhurnal. 1998. No. 3–4. P. 347–352.

Anufriev A. I. Ahremenko A. K. Energy cost of winter hibernation of the long-tailed ground squirrel, Ekologiya. 1990. No. 5. P. 68–72.

Anufriev A. I. Revin Yu. V. Bioenergetics of winter hibernation of bats (Chiroptera, Vespertilionidae) in Yakutia, Plecotus et al. 2006. No. 9. P. 8–18.

Anufriev A. I. Yadrihinskiy V. F. Temperature regulation of hibernation processes in the long-tailed ground squirrel Spermophilus undulatus Pallas, 1778, Principy ekologii. 2019. T. 8. No. 3. P. 8–17.

Anufriev A. I. Mechanisms of winter hibernation of small mammals in Yakutia. Novosibirsk: Izd-vo SO RAN, 2008. P. 1–157.

Anufriev A. I. Temperature regulation of winter hibernation rhythms, Prirodnye resursy Arktiki i Subarktiki. 2020. T. 25. No. 1. P. 60–67.

Augee M. L., Ealeu E. N. Torpor of the echidna, Tachyglossus aculeatus, J. Mammol. 1968. Vol. 49. No. 3. P. 446–464.

Ballinger M. A., Andrews M. T. Nature’s fat-burning machine: brown adipose tissue in a hibernating mammal, J. Exp. Biol. 2018. Vol. 221. DOI: 10.1242/jeb.162586.

Buck P. L., Barnes B. M. Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator, Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000. Vol. 279. No. 1. P. 255–262.

D’Alessandro A., Nemkov T., Bogren L. K., Martin S. L. and Hansen K. C. Comfortably numb and back: plasma metabolomics reveals biochemical adaptations in the hibernating 13-lined ground squirrel, J. Proteome Res. 2017. Vol. 16. P. 958–969.

Kalabuhov N. I. Hibernation of mammals. M.: Nauka, 1985. 264 p.

Kirillin R. A. Solomonov N. G. Anufriev A. I. Ohlopkov I. M. Wintering of the Northern leatherback (Eptesicus nilssonii, Chiroptera, Vespertilionidae) in the vicinity of Yakutsk (Central Yakutia), Zoologicheskiy zhurnal. 2018. T. 97. No. 9. P. 1171–1175.

Melvin R. G. and Andrews M. T. Torpor induction in mammals: recent discoveries fueling new ideas, Trends Endocrinol. Metab. 2009. No. 20. R. 490–498.

Neyfah S. A. Daudova G. M. Dissociation of oxidative phosphorylation in the liver at the time of awakening of a winter-sleeping animal, Biohimiya. 1964. T. 29. No. 5. P. 1003–1008.

Petrovskiy D. V. Novikov E. A. Moshkin M. P. Dynamics of body temperature of the common blind cat (ELLOBIUS TALPINUS, RODENTIA, CRICETIDAE) in winter, Zoologicheskiy zhurnal. 2008. T. 87. No. 12. P. 1504–1508.

Rutovskaya M. V. Diatroptov M. E. Kuznecova E. V. Anufriev A. I. Feoktistova N. Yu. Surov A. V. Dynamics of body temperature in the white-breasted hedgehog (Erinaceus roumanicus Barrett-Hamilton, 1900) during winter hibernation, Zoologicheskiy zhurnal. 2019a. No. 5. P. 556–566.

Rutovskaya M. V. Diatroptov M. E. Kuznecova E. V. Anufriev A. I. Feoktistova N. Yu. Surov A. V. The Phenomenon of lowering body temperature to negative values in hedgehogs of the genus Erinaceus during winter hibernation, Zhurnal evolyucionnoy biohimii i fiziologii. 2019b. T. 55. Vyp. 6. P. 463–464.

Skulachev V. P. Еnergy Transformation in biological membranes. M: Nauka, 1972. 448 p.

Solomonov N. G. Ahremenko A. K. Anufriev A. I. Dynamics of energy substrates in the tissues of awakening ground squirrels, Mehanizmy zimney spyachki. Puschino, 1987. P. 48–56.

Utz J. C., Velickovska V., Shmereva A., Van Breukelen F. Temporal and temperature effects on the maximum rate of rewarming from hibernation, Journal of Thermal Biology. 2007. Vol. 32. P. 276–281.

Van Breukelen F., Martin S. L. Reversible depression of transcription during hibernation, J. Comp. Physiol. 2002. Vol. 172. P. 355–361.

Van Breukelen F., Martin S. L. Translational initiation is uncoupled from elongation at 18 degrees C during mammalian hibernation, Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001. Vol. 281. P. 1374–1379.

Displays: 489; Downloads: 124;