Ryazanov S., Kulagina V., Grachev A., Sungatullina L., Zabelkin S., Shagidullin R. Effect of biochars from sewage sludge on plant growth, soil microorganisms, and nitrogen content in grey forest soils // Principy èkologii. 2020. № 4. P. 54‒70. DOI: 10.15393/j1.art.2020.10282


Issue № 4

Original research

pdf-version

Effect of biochars from sewage sludge on plant growth, soil microorganisms, and nitrogen content in grey forest soils

Ryazanov
   Stanislav Sergeevich
PhD, Research Institute of Ecology and Mineral Management Problems of Tatarstan Academy of Sciences (separate subdivision of State institution Tatarstan Academy of Sciences), erydit@yandex.ru
Kulagina
   Valentina Ivanovna
PhD, Research Institute of Ecology and Mineral Management Problems of Tatarstan Academy of Sciences (separate subdivision of State institution Tatarstan Academy of Sciences), viksoil@mail.ru
Grachev
   Andrey Nikolaevich
D.Sc, Kazan National Research Technological University; Energolesprom, LLC, energolesprom@gmail.com
Sungatullina
   Lutsia Mansurovna
Research Institute of Ecology and Mineral Management Problems of Tatarstan Academy of Sciences (separate subdivision of State institution Tatarstan Academy of Sciences), sunlyc@yandex.ru
Zabelkin
   Sergey Andreevich
Ph.D., Kazan National Research Technological University; Energolesprom, LLC, szabelkin@gmail.com
Shagidullin
   Rifgat Roaldovich
Doctor of Chem. Sci., Corresponding Member of the Academy of Sciences of the Republic of Tatarstan, Institute of Ecology and Subsoil Use of the Academy of Sciences of the Republic of Tatarstan (a separate subdivision of the State Scientific Institution of the Academy of Sciences of the Republic of Tatarstan), shagidullin_@mail.ru
Keywords:
biochar
biomass and height of plants
groups of microorganisms
pyrolysis temperature
sewage sludge
Summary: The aim of this study was to assess the impact of biochar obtained from sewage sludge at different pyrolysis temperatures on the height and biomass of oat and mustard plants, as well as on the microbiological parameters of gray forest soil. The biochar was obtained at the fast pyrolysis unit FPP02 at a temperature of 300 + 20 °C and 500 + 20 °С. During the laboratory vegetation experiment, 2%, 5% and 10% of biochar from the soil weight were added to the soil. Oat and white mustard plants were grown in vegetational pots for 42 days. The height and biomass of white mustard plants increased compared to the control when adding 2 % and 5% of biochar obtained at 500 °C, and 2 % of biochar obtained at 300 °C. When 10% biochar obtained at 300º was added to the soil, the productivity of oat and mustard plants decreased compared to the control. The introduction of biochar from sewage sludge contributed to an increase in the total nitrogen content in the soil. At that the number of most trophic groups of microorganisms increased, and more significantly -- when biochar obtained at 300º was added. The highest correlation between the concentration of biochar obtained at 300º and the number of microorganisms was observed for microscopic fungi, the lowest -- for the group of pedotrophic microorganisms.

© Petrozavodsk State University

Reviewer: N. Buchkina
Reviewer: E. Zharikova
Received on: 03 February 2020
Published on: 26 December 2020

References

Ábrego J., Atienza-Martíneza M., Gimenob J. R., Aibarc J., Quílezb D., Geaa G. Phytotoxicity of sewage sludge biochars prepared at different pyrolysis condition, 23rd European Biomass Conference and Exhibition. Vienna, Austria, 2015.

Arinushkina E. V. Guidlines for chemical analysis of Soils. M.: Izd-vo Mosk. un-ta, 1970. 487 p.

Burenkov S. V. Grachev A. N. Zabelkin S. A. Thermal utilization of sewage sludge by rapid pyrolysis in a grid reactor, Vestnik tehnologicheskogo universiteta. 2016. T. 19. No. 22. P. 40–43.

Chan K. Y., Van Zwieten L., Meszaros I., Downie A., Joseph S. Agronomic Values of Greenwaste Biochar as a Soil Amendment, Soil Res. 2007. Vol. 45 (8). P. 629–634. DOI: 10.1071/SR07109.

Classification and diagnistics of the USSR soils. M.: Kolos, 1977. 225 p.

Emcev V. T. Mishustin E. N. Microbiology. M.: Drofa, 2008. 444 p.

Gadd G. M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation, Mycological research. 2017. Vol. 111 (1). P. 3–49. DOI: 10.1016/j.mycres.2006.12.001.

Grachev A. N. Makarov A. A. Zabelkin S. A. Bashkirov V. N. Thermochemical processing of lignocellulosic raw material into biofuels and chemical products, Vestnik Kazanskogo tehnologicheskogo universiteta. 2013. T. 16. No. 21. P. 109–111.

Grigor'yan B. R. Grachev A. N. Kulagina V. I. Sungatullina L. M. Kol'cova T. G. Ryazanov S. S. The effect of biochar on plant growth, microbiological and physico-chemical parameters of low humus soil in conditions of vegetational experiment, Vestnik tehnologicheskogo universiteta. 2016. T. 19. No. 11. P. 185‒189.

Krishnakumar S., Rajalakshmi A. G., Balaganesh B., Manikandan P., Vinoth C., Rajendran V. Impact of Biochar on Soil Health, International Journal of Advanced Research. 2014. Vol. 2 (4). P. 933‒950.

Kulagina V. I. Grachev A. N. Ryazanov S. S. Kol'cova T. G. Sungatullina L. M. Rupova E. H. Assessment of phytotoxicity as the first stage of environmental and biological assessment of the pyrolysis products of sewage sludge on soils, Vestnik tehnologicheskogo universiteta. 2018a. T. 21. No. 1. P. 164‒168.

Kulagina V. I. Sungatullina L. M. Grachev A. N. Shagidullin R. R. Ryazanov S. S. Zabelkin S. A. Kol'cova T. G. Assessment of the impact of biochar on microbiological and some physicochemical parameters of gray forest soil, Rossiyskiy zhurnal prikladnoy ekologii. 2018b. No. 2 (14). P. 21‒25.

Lehman J., Da Silva J. P., Steiner C., Nehls T., Zech W., Glaser B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments, Plant and Soil. 2003. Vol. 249. P. 343–357.

Liu T., Liu B., Zhang W. Nutrients and Heavy Metals in Biochar Produced by Sewage Sludge Pyrolysis: Its Application in Soil Amendment, Pol. J. Environ. Stud. 2014. Vol. 23(1). P. 271‒275.

Major J. Guidelines on Practical Aspects of Biochar Application to Field Soil in Various Soil Management Systems, International Biochar Initiative. 2010. URL: https://biochar-international.org/ (data obrascheniya: 03.02.2011).

Mescheryakov A. M. Soil decomposition with sulfuric and perchloric acids to determine nitrogen and phosphorus, Pochvovedenie. 1963. No. 5. P. 21‒30.

Mishustin E. N. Microorganisms and soil fertility. M.: Izd-vo AN SSSR, 1956. 342 p.

Plehanova I. O. Self-remediation rate of agro-soddy-podzolic sandy loam soils fertilized by sewage sludge, Pochvovedenie. 2017. No. 4. P. 506‒512.

Reuce K. Kyrstya S. Fight against soil pollution. M.: Agropromizdat, 1986. 221 p.

Rizhiya E. Ya. Buchkina N. P. Muhina I. M. Belinec A. S. Balashov E. V. The influence of biochar on the properties of samples of sod-podzolic sandy loam soil with varying degrees of cultivation (laboratory experiment), Pochvovedenie. 2015. No. 2. P. 211‒220.

Ryazanov S. S. Kulagina V. I. Grachev A. N. Solodnikova O. M. Sungatullina L. M. Influence of pyrolysis temperature of municipal wastewater sludge on forms of heavy metals (Cu, Ni, Pb), Ekologicheskie problemy razvitiya agrolandshaftov i sposoby povysheniya ih produktivnosti: Sb. st. po materialam Mezhdunar. nauch. ekol. konf., Sost. L. P. Novopol'ceva; Pod red. I. P. Belyuchenko. Krasnodar: KubGAU, 2018. P. 31‒33.

Shlyauzhene D. Yu. Micromycetes in soils occupied by legumes and forage cereals: Dip. ... kand. biol. nauk. Vil'nyus, 1983. 206 p.

Singh B. P., Hatton B. J., Singh B., Cowie A. L., Kathuria A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils, J. of Environmental Quality. 2010. Vol. 39 (4). P. 1224–1235.

Solid mineral fuel. Tehnical analysis. URL: https://internet-law.ru/gosts/gost/55375/ (data obrascheniya: 12.05.2020).

Song D., Xue X. Y., Chen D. Z., He P. J., Dai X. H. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation, Chemosphere. 2014. Vol. 109. P. 213–220. DOI: 10.1016/j.chemosphere.2014.01.070.

Tepper E. Z. Shil'nikova V. K. Pereverzeva G. I. Microbiology workshop. 4-e izd., pererab. i dop. M.: Kolos, 1993. 175 p.

The method of thermal processing of organic containing raw materials. 2009, A. N. Grachev, V. N. Bashkirov, P. A. Zabelkin, A. A. Makarov, D. V. Tuncev, R. G. Hismatov; Patentoobladatel' OOO "EnergoLesProm". Zayavl. 03.10.2009; Opubl. 27.07.2010.

Van Zwieten L., Kimber S., Morris S., Chan K. Y., Downie A., Rust J., Joseph S., Cowie A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility, Plant Soil. 2010. Vol. 327. P. 235–246. DOI: 10.1007/s11104-009-0050-x.

Waqas M., Khan S., Qing H., Brian R., Cai C. The effects of sewage sludge and sewage sludge biochar on PAH and potentially toxic element bioaccumulation in Cucumis sativa L., Chemosphere. 2013. Vol. 105. DOI: 10.1016/j.chemosphere.2013.11.064.

World Reference Base for Soil Resources 2014, Update 2015. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO, 2015. 192 p.

Displays: 473; Downloads: 157;